We address the problem of adaptive modulation and coding scheme(AMCS) for a multi-input multioutput(MIMO) system in presence of time-varying transmitting correlation.Antenna subset selection and quasiorthogonal space-...We address the problem of adaptive modulation and coding scheme(AMCS) for a multi-input multioutput(MIMO) system in presence of time-varying transmitting correlation.Antenna subset selection and quasiorthogonal space-time block code(QOSTBC) have different error performances with different signal-to-noise ratios(SNRs) and in different spatial correlation scenarios.The error performance can be improved by selecting an appropriate transmission scheme to adapt to various channel conditions.The maximum distance criterion is the simplest and very effective algorithm for the antenna subset selection without needs of complex calculation and channel state information at transmitter(CSIT).The minimum error performance criteria and the simplified linear decision strategy are developed for constant transmission rate traffic to select the optimal transmission scheme.It can dramatically decrease algorithm complexity for obtaining error probability according to the known quantities comparing with using instant CSIT.Simulation results show that,remarkable performances including low SNR and weak spatial correlation at the expense of simple calculation and almost no bandwidth loss by adopting AMCS can be achieved.The proposed AMCS improves robustness of slowly varying spatial correlated channels.展开更多
基金the Chinese Scholarship Council for the financial support
文摘We address the problem of adaptive modulation and coding scheme(AMCS) for a multi-input multioutput(MIMO) system in presence of time-varying transmitting correlation.Antenna subset selection and quasiorthogonal space-time block code(QOSTBC) have different error performances with different signal-to-noise ratios(SNRs) and in different spatial correlation scenarios.The error performance can be improved by selecting an appropriate transmission scheme to adapt to various channel conditions.The maximum distance criterion is the simplest and very effective algorithm for the antenna subset selection without needs of complex calculation and channel state information at transmitter(CSIT).The minimum error performance criteria and the simplified linear decision strategy are developed for constant transmission rate traffic to select the optimal transmission scheme.It can dramatically decrease algorithm complexity for obtaining error probability according to the known quantities comparing with using instant CSIT.Simulation results show that,remarkable performances including low SNR and weak spatial correlation at the expense of simple calculation and almost no bandwidth loss by adopting AMCS can be achieved.The proposed AMCS improves robustness of slowly varying spatial correlated channels.