期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
结合密度峰值和切边权值的自训练算法
被引量:
4
1
作者
卫丹妮
杨有龙
仇海全
《计算机工程与应用》
CSCD
北大核心
2021年第2期70-76,共7页
针对自训练迭代过程中错误标记样本对算法性能的影响,提出了基于密度峰值和切边权值的自训练算法。用密度聚类方法发现数据集的空间结构,选出具有代表性的未标记样本进行标签预测。用切边权值作为统计量进行假设检验,判断样本是否被正...
针对自训练迭代过程中错误标记样本对算法性能的影响,提出了基于密度峰值和切边权值的自训练算法。用密度聚类方法发现数据集的空间结构,选出具有代表性的未标记样本进行标签预测。用切边权值作为统计量进行假设检验,判断样本是否被正确标记,进而用正确标记样本逐步扩充有标记样本集合,直至所有未标记样本标签预测完成。新算法既充分利用了样本数据的空间结构信息,又解决了部分样本被标记错误的问题,提高了算法的分类准确率。通过在真实数据集上实验验证了新算法的有效性。
展开更多
关键词
自训练
密度峰
值
切边权值
假设检验
下载PDF
职称材料
题名
结合密度峰值和切边权值的自训练算法
被引量:
4
1
作者
卫丹妮
杨有龙
仇海全
机构
西安电子科技大学数学与统计学院
安徽科技学院信息与网络工程学院
出处
《计算机工程与应用》
CSCD
北大核心
2021年第2期70-76,共7页
基金
国家自然科学基金(61573266)
安徽省高校自然科学研究重点项目(KJ2019A0816)。
文摘
针对自训练迭代过程中错误标记样本对算法性能的影响,提出了基于密度峰值和切边权值的自训练算法。用密度聚类方法发现数据集的空间结构,选出具有代表性的未标记样本进行标签预测。用切边权值作为统计量进行假设检验,判断样本是否被正确标记,进而用正确标记样本逐步扩充有标记样本集合,直至所有未标记样本标签预测完成。新算法既充分利用了样本数据的空间结构信息,又解决了部分样本被标记错误的问题,提高了算法的分类准确率。通过在真实数据集上实验验证了新算法的有效性。
关键词
自训练
密度峰
值
切边权值
假设检验
Keywords
self-training
density peak
cut edge weight
hypothesis testing
分类号
TP301.6 [自动化与计算机技术—计算机系统结构]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
结合密度峰值和切边权值的自训练算法
卫丹妮
杨有龙
仇海全
《计算机工程与应用》
CSCD
北大核心
2021
4
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部