刑期预测模型利用自然语言处理技术自动预测当前案件的建议刑期,对提高司法工作效率,维护司法审判的公平与公正,以及实现同案同判具有重要意义。现有的研究通常采用基于预训练语言模型的方法进行刑期预测建模,但由于存在裁判文书文本较...刑期预测模型利用自然语言处理技术自动预测当前案件的建议刑期,对提高司法工作效率,维护司法审判的公平与公正,以及实现同案同判具有重要意义。现有的研究通常采用基于预训练语言模型的方法进行刑期预测建模,但由于存在裁判文书文本较长、专业性强及部分案由标注数据不足等问题,刑期预测任务依然具有较强的挑战性。针对上述问题,本文提出了基于带噪预训练的刑期预测方法。首先,根据刑期预测任务的特点,设计了融合罪名信息的刑期预测模型;其次,结合遮蔽语言模型(Masked Language Model,MLM)任务和自蒸馏策略减少刑期预测任务预训练数据中噪声的影响;最后,改进RoBERTa-wwm模型中的位置嵌入,增强模型的长文本建模能力。实验结果表明,本文提出的预训练方法能够极大地提升刑期预测任务的准确率,在小样本条件下也具有很好的表现。展开更多
文摘刑期预测模型利用自然语言处理技术自动预测当前案件的建议刑期,对提高司法工作效率,维护司法审判的公平与公正,以及实现同案同判具有重要意义。现有的研究通常采用基于预训练语言模型的方法进行刑期预测建模,但由于存在裁判文书文本较长、专业性强及部分案由标注数据不足等问题,刑期预测任务依然具有较强的挑战性。针对上述问题,本文提出了基于带噪预训练的刑期预测方法。首先,根据刑期预测任务的特点,设计了融合罪名信息的刑期预测模型;其次,结合遮蔽语言模型(Masked Language Model,MLM)任务和自蒸馏策略减少刑期预测任务预训练数据中噪声的影响;最后,改进RoBERTa-wwm模型中的位置嵌入,增强模型的长文本建模能力。实验结果表明,本文提出的预训练方法能够极大地提升刑期预测任务的准确率,在小样本条件下也具有很好的表现。