在网络流分类实践中,网络运营商通常只需要知道网络流所需的服务类别(class of service,CoS),就可对网络流优先级和资源分配做出决定。为了满足用户对体验质量的需求,提出了面向服务等级的网络流多任务分类方法。该方法是直接进行面向Co...在网络流分类实践中,网络运营商通常只需要知道网络流所需的服务类别(class of service,CoS),就可对网络流优先级和资源分配做出决定。为了满足用户对体验质量的需求,提出了面向服务等级的网络流多任务分类方法。该方法是直接进行面向CoS的流分类,而不需要推断应用类型。同时提出多任务框架,利用领域知识定义宏特征组及应用合作博弈中的Shapley Value模型来合理分析特征,并用决策树分箱来解决CoS阈值划分问题。采用真实网络数据集进行实验,通过在少量标记数据的情况下,优化网络参数和调整各网络模型时间损耗和分类准确性的稳定相关系数。结果表明,该方法分类准确度(提高了12.66%)和时间消耗(减少了39.23%)性能优于现有文献方法,同时分析了多分类实验结果并给出有关建议。展开更多
In order to obtain the image of airframe damage region and provide the input data for aircraft intelligent maintenance,a multi-dimensional and multi-threshold airframe damage region division method based on correlatio...In order to obtain the image of airframe damage region and provide the input data for aircraft intelligent maintenance,a multi-dimensional and multi-threshold airframe damage region division method based on correlation optimization is proposed.On the basis of airframe damage feature analysis,the multi-dimensional feature entropy is defined to realize the full fusion of multiple feature information of the image,and the division method is extended to multi-threshold to refine the damage division and reduce the impact of the damage adjacent region’s morphological changes on the division.Through the correlation parameter optimization algorithm,the problem of low efficiency of multi-dimensional multi-threshold division method is solved.Finally,the proposed method is compared and verified by instances of airframe damage image.The results show that compared with the traditional threshold division method,the damage region divided by the proposed method is complete and accurate,and the boundary is clear and coherent,which can effectively reduce the interference of many factors such as uneven luminance,chromaticity deviation,dirt attachment,image compression,and so on.The correlation optimization algorithm has high efficiency and stable convergence,and can meet the requirements of aircraft intelligent maintenance.展开更多
文摘在网络流分类实践中,网络运营商通常只需要知道网络流所需的服务类别(class of service,CoS),就可对网络流优先级和资源分配做出决定。为了满足用户对体验质量的需求,提出了面向服务等级的网络流多任务分类方法。该方法是直接进行面向CoS的流分类,而不需要推断应用类型。同时提出多任务框架,利用领域知识定义宏特征组及应用合作博弈中的Shapley Value模型来合理分析特征,并用决策树分箱来解决CoS阈值划分问题。采用真实网络数据集进行实验,通过在少量标记数据的情况下,优化网络参数和调整各网络模型时间损耗和分类准确性的稳定相关系数。结果表明,该方法分类准确度(提高了12.66%)和时间消耗(减少了39.23%)性能优于现有文献方法,同时分析了多分类实验结果并给出有关建议。
基金supported by the Aeronautical Science Foundation of China(No.20151067003)。
文摘In order to obtain the image of airframe damage region and provide the input data for aircraft intelligent maintenance,a multi-dimensional and multi-threshold airframe damage region division method based on correlation optimization is proposed.On the basis of airframe damage feature analysis,the multi-dimensional feature entropy is defined to realize the full fusion of multiple feature information of the image,and the division method is extended to multi-threshold to refine the damage division and reduce the impact of the damage adjacent region’s morphological changes on the division.Through the correlation parameter optimization algorithm,the problem of low efficiency of multi-dimensional multi-threshold division method is solved.Finally,the proposed method is compared and verified by instances of airframe damage image.The results show that compared with the traditional threshold division method,the damage region divided by the proposed method is complete and accurate,and the boundary is clear and coherent,which can effectively reduce the interference of many factors such as uneven luminance,chromaticity deviation,dirt attachment,image compression,and so on.The correlation optimization algorithm has high efficiency and stable convergence,and can meet the requirements of aircraft intelligent maintenance.