期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
轨道非平稳不平顺激扰下高速列车半主动控制研究
1
作者 闫中奎 陈春俊 熊仕勇 《机械设计与制造》 北大核心 2019年第2期26-29,33,共5页
为改善轨道非平稳随机不平顺对列车动力学性能的影响,基于高速列车线路运行的重复性以及周期性,采用变步长迭代寻优控制算法,建立高速列车抗蛇行减振器半主动变阻尼控制系统,以转向架横向加速度峰值为目标函数,不断迭代寻找最有利于列... 为改善轨道非平稳随机不平顺对列车动力学性能的影响,基于高速列车线路运行的重复性以及周期性,采用变步长迭代寻优控制算法,建立高速列车抗蛇行减振器半主动变阻尼控制系统,以转向架横向加速度峰值为目标函数,不断迭代寻找最有利于列车动力学性能的减振器阻尼值,改善了传统列车定阻尼值的弊端。多体动力学软件和控制系统仿真软件相结合联合仿真,仿真分析表明,轨道非平稳随机不平顺会使得车体和构架横向加速度、轮对横向力以及轮轨磨耗以倍数增加,严重影响列车动力学性能;通过变阻尼控制之后,构架横向加速度、轮对横向力以及轮对磨耗明显减小,车体横向加速度也略有减小,能够改善列车动力学性能,提高列车运行安全性与平稳性。 展开更多
关键词 高速列车 轨道非平稳随机不平顺 抗蛇行减振器 变步长迭代寻优 列车动力学性能
下载PDF
Longitudinal type-line optimization of high-speed train for low aerodynamic noise 被引量:4
2
作者 肖友刚 杨群 +1 位作者 孙亮 时彧 《Journal of Central South University》 SCIE EI CAS 2014年第6期2494-2500,共7页
The basic head shape of high-speed train is determined by its longitudinal type-line(LTL),so it is crucial to optimize its aerodynamic performance.Based on the parametric modeling of LTL constructed by non-uniform rel... The basic head shape of high-speed train is determined by its longitudinal type-line(LTL),so it is crucial to optimize its aerodynamic performance.Based on the parametric modeling of LTL constructed by non-uniform relational B-spline(NURBS)and the fluctuation pressure obtained by large eddy simulation(LES),the Kriging surrogate model(KSM)of LTL was constructed for low aerodynamic noise,and the accuracy of the KSM was improved gradually by adding the sample point with maximum expected improvement(EI)and the optimal point from optimization.The optimal objective was searched with genetic algorithm(GA).The results show that the total fluctuation pressure level(FPL)of the optimal LTL can be 8.7 dB less than that of original one,and the shape optimization method is feasible for low aerodynamic noise design. 展开更多
关键词 longitudinal type-line non-uniform relational B-spline (NURBS) aerodynamic noise fluctuation pressure level (FPL) shape optimization
下载PDF
Determination method of load balance ranges for train operation safety under strong wind 被引量:3
3
作者 田红旗 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第3期1146-1154,共9页
The aerodynamic performances of a passenger car and a box car with different heights of windbreak walls under strong wind were studied using the numerical simulations, and the changes of aerodynamic side force, lift f... The aerodynamic performances of a passenger car and a box car with different heights of windbreak walls under strong wind were studied using the numerical simulations, and the changes of aerodynamic side force, lift force and overturning moment with different wind speeds and wall heights were calculated. According to the principle of static moment balance of vehicles, the overturning coefficients of trains with different wind speeds and wall heights were obtained. Based on the influence of wind speed and wall height on the aerodynamic performance and the overturning stability of trains, a method of determination of the load balance ranges for the train operation safety was proposed, which made the overturning coefficient have nearly closed interval. A min(|A1|+|A2|), s.t. |A1|→|A2|(A1 refers to the downwind overturning coefficient and A2 refers to the upwind overturning coefficient)was found. This minimum value helps to lower the wall height as much as possible, and meanwhile, guarantees the operation safety of various types of trains under strong wind. This method has been used for the construction and improvement of the windbreak walls along the Lanzhou–Xinjiang railway(from Lanzhou to Urumqi, China). 展开更多
关键词 strong wind train load balance range overturning coefficient aerodynamic performance
下载PDF
Temperature-induced deformation of CRTS II slab track and its effect on track dynamical properties 被引量:9
4
作者 SONG XiaoLin ZHAO ChunFa ZHU XiaoJia 《Science China(Technological Sciences)》 SCIE EI CAS 2014年第10期1917-1924,共8页
Two finite-element models of the CRTS II slab track are presented to simulate temperature-induced deformations of the concrete track slab with no deterioration or with a deteriorated cement asphalt mortar(CAM).One mod... Two finite-element models of the CRTS II slab track are presented to simulate temperature-induced deformations of the concrete track slab with no deterioration or with a deteriorated cement asphalt mortar(CAM).One model,which considers the fully bonding interface between the slab and the CAM layer,could applied to a track that is in good condition;the other model uses cohesive zone elements to simulate the deteriorated CAM with some possible interfacial separation and slip.Utilizing both of the models,temperature-induced warp deformations of track under various temperature loads are investigated.The influence of temperature deformation on the dynamic properties of the track is analyzed based on the train-track coupled dynamics.Numerical results show that the deteriorated CAM layer can significantly increase temperature deformations of a CRTS II track slab,which would produce tiny rail irregularities.There are clear differences between the deformation shapes of the track slabs that have an inseparable mortar layer and those have a separable mortar layer.The track slab with a deteriorated mortar layer showed more open curl distortion than the track slab in good condition.The dynamical response index of the slab track is intensified to a certain level due to the temperature deformation;with an increase of the train speed,the track dynamical responses increased linearly.However,rail irregularities due to the temperature deformations are very tiny.Even if a track is exposed to extreme temperature loads and the mortar layer is deteriorated,temperature deformation can have a negligible effect on the track’s dynamical properties. 展开更多
关键词 high-speed railway temperature deformation slab track dynamical properties
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部