The basic head shape of high-speed train is determined by its longitudinal type-line(LTL),so it is crucial to optimize its aerodynamic performance.Based on the parametric modeling of LTL constructed by non-uniform rel...The basic head shape of high-speed train is determined by its longitudinal type-line(LTL),so it is crucial to optimize its aerodynamic performance.Based on the parametric modeling of LTL constructed by non-uniform relational B-spline(NURBS)and the fluctuation pressure obtained by large eddy simulation(LES),the Kriging surrogate model(KSM)of LTL was constructed for low aerodynamic noise,and the accuracy of the KSM was improved gradually by adding the sample point with maximum expected improvement(EI)and the optimal point from optimization.The optimal objective was searched with genetic algorithm(GA).The results show that the total fluctuation pressure level(FPL)of the optimal LTL can be 8.7 dB less than that of original one,and the shape optimization method is feasible for low aerodynamic noise design.展开更多
The aerodynamic performances of a passenger car and a box car with different heights of windbreak walls under strong wind were studied using the numerical simulations, and the changes of aerodynamic side force, lift f...The aerodynamic performances of a passenger car and a box car with different heights of windbreak walls under strong wind were studied using the numerical simulations, and the changes of aerodynamic side force, lift force and overturning moment with different wind speeds and wall heights were calculated. According to the principle of static moment balance of vehicles, the overturning coefficients of trains with different wind speeds and wall heights were obtained. Based on the influence of wind speed and wall height on the aerodynamic performance and the overturning stability of trains, a method of determination of the load balance ranges for the train operation safety was proposed, which made the overturning coefficient have nearly closed interval. A min(|A1|+|A2|), s.t. |A1|→|A2|(A1 refers to the downwind overturning coefficient and A2 refers to the upwind overturning coefficient)was found. This minimum value helps to lower the wall height as much as possible, and meanwhile, guarantees the operation safety of various types of trains under strong wind. This method has been used for the construction and improvement of the windbreak walls along the Lanzhou–Xinjiang railway(from Lanzhou to Urumqi, China).展开更多
Two finite-element models of the CRTS II slab track are presented to simulate temperature-induced deformations of the concrete track slab with no deterioration or with a deteriorated cement asphalt mortar(CAM).One mod...Two finite-element models of the CRTS II slab track are presented to simulate temperature-induced deformations of the concrete track slab with no deterioration or with a deteriorated cement asphalt mortar(CAM).One model,which considers the fully bonding interface between the slab and the CAM layer,could applied to a track that is in good condition;the other model uses cohesive zone elements to simulate the deteriorated CAM with some possible interfacial separation and slip.Utilizing both of the models,temperature-induced warp deformations of track under various temperature loads are investigated.The influence of temperature deformation on the dynamic properties of the track is analyzed based on the train-track coupled dynamics.Numerical results show that the deteriorated CAM layer can significantly increase temperature deformations of a CRTS II track slab,which would produce tiny rail irregularities.There are clear differences between the deformation shapes of the track slabs that have an inseparable mortar layer and those have a separable mortar layer.The track slab with a deteriorated mortar layer showed more open curl distortion than the track slab in good condition.The dynamical response index of the slab track is intensified to a certain level due to the temperature deformation;with an increase of the train speed,the track dynamical responses increased linearly.However,rail irregularities due to the temperature deformations are very tiny.Even if a track is exposed to extreme temperature loads and the mortar layer is deteriorated,temperature deformation can have a negligible effect on the track’s dynamical properties.展开更多
基金Projects(50975289,51275531)supported by the National Natural Science Foundation of ChinaProject(201104514)supported by the Special China Postdoctoral Science Foundation,ChinaProject(20100471229)supported by China Postdoctoral Science Foundation
文摘The basic head shape of high-speed train is determined by its longitudinal type-line(LTL),so it is crucial to optimize its aerodynamic performance.Based on the parametric modeling of LTL constructed by non-uniform relational B-spline(NURBS)and the fluctuation pressure obtained by large eddy simulation(LES),the Kriging surrogate model(KSM)of LTL was constructed for low aerodynamic noise,and the accuracy of the KSM was improved gradually by adding the sample point with maximum expected improvement(EI)and the optimal point from optimization.The optimal objective was searched with genetic algorithm(GA).The results show that the total fluctuation pressure level(FPL)of the optimal LTL can be 8.7 dB less than that of original one,and the shape optimization method is feasible for low aerodynamic noise design.
基金Project(U1334203) supported by the National Natural Science Foundation of China
文摘The aerodynamic performances of a passenger car and a box car with different heights of windbreak walls under strong wind were studied using the numerical simulations, and the changes of aerodynamic side force, lift force and overturning moment with different wind speeds and wall heights were calculated. According to the principle of static moment balance of vehicles, the overturning coefficients of trains with different wind speeds and wall heights were obtained. Based on the influence of wind speed and wall height on the aerodynamic performance and the overturning stability of trains, a method of determination of the load balance ranges for the train operation safety was proposed, which made the overturning coefficient have nearly closed interval. A min(|A1|+|A2|), s.t. |A1|→|A2|(A1 refers to the downwind overturning coefficient and A2 refers to the upwind overturning coefficient)was found. This minimum value helps to lower the wall height as much as possible, and meanwhile, guarantees the operation safety of various types of trains under strong wind. This method has been used for the construction and improvement of the windbreak walls along the Lanzhou–Xinjiang railway(from Lanzhou to Urumqi, China).
基金supported by the National Basic Research Program of China("973"Project)(Grant No.2013CB036202)the National Natural Science Foundation of China(Grant Nos.51008254,51478397)the Fundamental Research Funds for Central Universities(Grant No.2682013CX029)
文摘Two finite-element models of the CRTS II slab track are presented to simulate temperature-induced deformations of the concrete track slab with no deterioration or with a deteriorated cement asphalt mortar(CAM).One model,which considers the fully bonding interface between the slab and the CAM layer,could applied to a track that is in good condition;the other model uses cohesive zone elements to simulate the deteriorated CAM with some possible interfacial separation and slip.Utilizing both of the models,temperature-induced warp deformations of track under various temperature loads are investigated.The influence of temperature deformation on the dynamic properties of the track is analyzed based on the train-track coupled dynamics.Numerical results show that the deteriorated CAM layer can significantly increase temperature deformations of a CRTS II track slab,which would produce tiny rail irregularities.There are clear differences between the deformation shapes of the track slabs that have an inseparable mortar layer and those have a separable mortar layer.The track slab with a deteriorated mortar layer showed more open curl distortion than the track slab in good condition.The dynamical response index of the slab track is intensified to a certain level due to the temperature deformation;with an increase of the train speed,the track dynamical responses increased linearly.However,rail irregularities due to the temperature deformations are very tiny.Even if a track is exposed to extreme temperature loads and the mortar layer is deteriorated,temperature deformation can have a negligible effect on the track’s dynamical properties.