The risk of failure of the control loop can occur when a high-speed maglev train runs on viaduct.Meanwhile,the failure of the levitation magnets which balances the gravity of the maglev train could cause the train col...The risk of failure of the control loop can occur when a high-speed maglev train runs on viaduct.Meanwhile,the failure of the levitation magnets which balances the gravity of the maglev train could cause the train collision with track.To study the dynamic response of the train and the viaduct when the levitation magnet control loop failure occurs,a high-speed maglev train-viaduct coupling model,which includes a maglev controller fitted by measured force-gap data and considers the actual structure of train and viaduct,is established.Then the accuracy and effectiveness of the established approach are validated by comparing the computed dynamic responses and frequencies with the measurement results.After that,the dynamic responses of maglev train and viaduct are discussed under normal operation and control loop failures,and the most disadvantageous combination of control loop failures is obtained.The results show that when a single control loop fails,it only has a great influence on the failed electromagnet,and the maglev response of adjacent electromagnets has no obvious change and no collision occurs.But there is a risk of rail collisions when the dual control loop fails.展开更多
This paper introduces the high-speed electrical multiple unit (EMO) life cycle, including the design, manufacturing, testing, and maintenance stages. It also presents the train control and monitoring system (TCMS)...This paper introduces the high-speed electrical multiple unit (EMO) life cycle, including the design, manufacturing, testing, and maintenance stages. It also presents the train control and monitoring system (TCMS) software development platform, the TCMS testing and verification bench, the EMU driving simulation platform, and the EMU remote data transmittal and maintenance platform. All these platforms and benches combined together make up the EMU life cycle cost (LCC) system. Each platform facilitates EMU LCC management and is an important part of the system.展开更多
Based on optimM velocity car-following model, in this paper, we propose a new railway tramc model for describing the process of train movement control. In the proposed model, we give an improved form of the optimal ve...Based on optimM velocity car-following model, in this paper, we propose a new railway tramc model for describing the process of train movement control. In the proposed model, we give an improved form of the optimal velocity function V^opt, which is considered as the desired velocity function for train movement control under different control conditions. In order to test the proposed model, we simulate and analyze the trajectories of train movements, moreover, discuss the relationship curves between the train allowable velocity and the site of objective point in detail. Analysis results indicate that the proposed model can well capture some realistic futures of train movement control.展开更多
With the fast development of highspeed railways,a call for fulfilling the notion of communication at "anytime,anywhere" for high-speed train passengers in the Train Operating Control System is on the way.In ...With the fast development of highspeed railways,a call for fulfilling the notion of communication at "anytime,anywhere" for high-speed train passengers in the Train Operating Control System is on the way.In order to make a realization of that,new railway wireless communication networks are needed.The most promising one is the Long Term Evolution for Railway which will provide broadband access,fast handover,and reliable communication for high mobility users.However,with the increase of speed,the system is subjected to high bit error rate,Doppler frequency shift and handover failure just like other system does.This paper is trying to solve these problems by employing MIMO technique.Specifically,the goal is to provide higher data rate,higher reliability,less delay,and other relative quality of services for passengers.MIMO performance analysis,resource allocation,and access control for handover and various services in a two-hop model are proposed in this paper.Analytical results and simulation results show that the proposed model and schemes perform well in improving the system performances.展开更多
The zone control subsystem is a real-time control system,which requests the correctness of the control process.Train tracing scene is an important function of the zone controller(ZC)in the communication based train co...The zone control subsystem is a real-time control system,which requests the correctness of the control process.Train tracing scene is an important function of the zone controller(ZC)in the communication based train control(CBTC)system.In the process of deep development and design,to ensure the safety of the system,the system needs to be modeled,simulated and verified to discover the system design flaws.Unified modeling language(UML)is combined with timed automata,and timed automata network models of train-filter and train tracing demarcation-point are established.At the same time,the verification tool of UPPAAL is applied to simulate the system,and verify the requirements of performance and function of system.The results show that the function of train tracing demaraction-point meets the requirements of system safety and limited activity.Therefore,the method is feasible and can be applied to the modeling and verification of other scenes of train control system.展开更多
With rapid development of the railway traffic, the moving block signaling system (MBS) method has become more and more important for increasing the track capacity by allowing trains to run in a shorter time-headway ...With rapid development of the railway traffic, the moving block signaling system (MBS) method has become more and more important for increasing the track capacity by allowing trains to run in a shorter time-headway while maintaining the required safety margins. In this framework, the tracking target point of the following train is moving forward with its leading train. This paper focuses on the energy saving tracking control of two successive trains in MBS. Nonlinear programming method is used to optimize the energy-saving speed trajectory of the following train. The real-time location of the leading train could be integrated into the optimization process. Due to simplicity, it can be used for online implementation. The feasibility and effectiveness are verified through simulation. The results show that the new method is efficient on energy saving even when disturbances present.展开更多
This paper presents a new cellular automaton (CA) model for train control system simulation. In the proposed CA model, the driver reactions to train movements are captured by some updated rules. The space-time diagr...This paper presents a new cellular automaton (CA) model for train control system simulation. In the proposed CA model, the driver reactions to train movements are captured by some updated rules. The space-time diagram of traffic flow and the trajectory of train movement is used to obtain insight into the characteristic behavior of railway traffic flow. A number of simulation results demonstrate that the proposed CA model can be successfully used for the simulations of railway traffic. Not only the characteristic behavior of railway traffic flow can be reproduced, but also the simulation values of the minimum time headway are close to the theoretical values.展开更多
Train control systems ensure the safety of railways. This paper begins with a summary of the typical train control systems in Japan and Europe. Based on this summary, the author then raises the following question rega...Train control systems ensure the safety of railways. This paper begins with a summary of the typical train control systems in Japan and Europe. Based on this summary, the author then raises the following question regarding current train control systems: What approach should be adopted in order to enhance the functionality, safety, and reliability of train control systems and assist in commercial operations on railways? Next, the author provides a desirable architecture that is likely to assist with the development of new train control systems based on current information and communication technologies. A new unified train control system (UTCS) is proposed that is effective in enhancing the robustness and com- petitiveness of a train control system. The ultimate architecture of the UTCS will be only composed of essential elements such as point machines and level crossing control devices in the field. Finally, a pro- cessing method of the UTCS is discussed.展开更多
Communication based train control systems (CBTC) must work even in the worst situation-- train crossing. This paper models the propagation characteristics in one of the most common and piv- otal scenarios--train cro...Communication based train control systems (CBTC) must work even in the worst situation-- train crossing. This paper models the propagation characteristics in one of the most common and piv- otal scenarios--train crossing in subway tunnels which is rarely mentioned in previous publications. Firstly, measurements for train crossing scenario at 2.4 GHz in a real subway line in Madrid have been made. The field measurement is the most reliable way to reveal the propagation characteristics involving shadowing effect and fast fading. Moreover, to precisely describe the fast fading distribu- tion and eliminate the inevitable weak points of traditional fitting way, a best numerical approxima- tion method using Legendre orthogonal polynomials has been proposed. Comparisons show that this method works better and is of greater physical significance. Finally, a complete statistical model is given and all the coefficients can be applied by system designers for the link and system level simu- lations.展开更多
In case of the failure of Automatic Train Control (ATC), it is necessary to organize the train by Telephone Block System. In this paper, the APP system is built on the basis of local area network, which is focus on ...In case of the failure of Automatic Train Control (ATC), it is necessary to organize the train by Telephone Block System. In this paper, the APP system is built on the basis of local area network, which is focus on the simulation station map of Telephone Block System, Wain operation, equipment failure. This APP can vividly simulate the application of Telephone Block System in train urban transit organization.展开更多
Based on the discrete time method, an effective movement control model is designed for a group of high- speed trains on a rail network. The purpose of the model is to investigate the specific traffic characteristics o...Based on the discrete time method, an effective movement control model is designed for a group of high- speed trains on a rail network. The purpose of the model is to investigate the specific traffic characteristics of high-speed trains under the interruption of stochastic irregular events. In the model, the high-speed rail traffic system is supposed to be equipped with the moving-block signalling system to guarantee maximum traversing capacity of the railway. To keep the safety of trains' movements, some operational strategies are proposed to control the movements of trains in the model, including traction operation, braking operation, and entering-station operation. The numerical simulations show that the designed model can well describe the movements of high-speed trains on the rail network. The research results can provide the useful information not only for investigating the propagation features of relevant delays under the irregular disturbance but also for rerouting and reseheduling trains on the rail network.展开更多
The application of new-designed levitation controller requires extensive validation prior to enter into commercial service. However, huge mounts of approximations and assumptions lead the theoretical analysis away fro...The application of new-designed levitation controller requires extensive validation prior to enter into commercial service. However, huge mounts of approximations and assumptions lead the theoretical analysis away from the engineering practice. The experimental methods are time-consuming and financial expensive, even unrealizable due to the lack of suitable sensors. Numerical simulations can bridge the gap between the theoretical analysis and experimental techniques. A complete overall dynamic model of maglev levitation system is derived in this work, which includes the simple-supported bridges, the calculation of electromagnetic force with more details, the stress of levitation modules and the cabin. Based on the aforementioned model, it shows that the inherent nonlinearity, inner coupling, misalignments between the sensors and actuators, and self-excited vibration are the main issues that should be considered during the design process of controller. Then, the backstepping controller based on the mathematical model of the module with reasonable simplifications is proposed, and the stability proofs are listed. To show the advantage of controller, two numerical simulation experiments are carried out. Finally, the results illustrating closed-loop performance are provided.展开更多
This work addresses the saturation influence of control voltage on the occurring of self-excited vibration of maglev vehicle-bridge interaction system, which greatly degrades the stability of the levitation control, d...This work addresses the saturation influence of control voltage on the occurring of self-excited vibration of maglev vehicle-bridge interaction system, which greatly degrades the stability of the levitation control, decreases the ride comfort, and restricts the cost of the whole system. Firstly, the interaction model of vehicle-bridge system is developed. Based on the interaction model, the relationship between the control voltage and vibration frequency is solved. Then, the variation of the effective direct component and fundamental harmonic are discussed. Furthermore, from the perspective of energy transmission between the levitation system and bridge, the principle underlying the self-excited vibration is explored, and the influence on the stability is discussed. Finally, in terms of the variation of the characteristic roots, the influence is analyzed further and some conclusions are obtained. This study provides a theoretical guidance for mastering the self-excited vibration problems.展开更多
Operation safety and stability of the train mainly depend on the interaction between the wheel and rail.Knowledge of wheel/rail contact force is important for vehicle control systems that aim to enhance vehicle stabil...Operation safety and stability of the train mainly depend on the interaction between the wheel and rail.Knowledge of wheel/rail contact force is important for vehicle control systems that aim to enhance vehicle stability and passenger safety.Since wheel/rail contact forces of high-speed train are very difficult to measure directly,a new estimation process for wheel/rail contact forces was introduced in this work.Based on the state space equation,dynamic programming methods and the Bellman principle of optimality,the main theoretical derivation of the inversion mathematical model was given.The new method overcomes the weakness of large fluctuations which exist in current inverse techniques.High-speed vehicle was chosen as the research object,accelerations of axle box as input conditions,10 degrees of freedom vertical vibration model and 17 degrees of freedom lateral vibration model were established,respectively.Under 250 km/h,the vertical and lateral wheel/rail forces were identified.From the time domain and frequency domain,the comparison of the results between inverse and SIMPACK models were given.The results show that the inverse mathematical model has high precision for inversing the wheel/rail contact forces of an operation high-speed vehicle.展开更多
With the progress of the railway technology, the railway transportation is becoming more efficient, intelligent and faster. High speed trains, as a major part of the railway transportation, are engaged with passenger&...With the progress of the railway technology, the railway transportation is becoming more efficient, intelligent and faster. High speed trains, as a major part of the railway transportation, are engaged with passenger's safety, and therefore the reliability issue is very important in such vital systems. In this paper, a dependable speed controller core based on FPGA has been developed for high speed trains. To improve the reliability and mitigate single upset faults on basic speed controller, this paper proposes a new effective method which is based on hardware redundancy. In the proposed Hybrid Dual Duplex Redundancy(HDDR) method, the original controller is quadruplicated and correct values are voted through the comparator and error detection unit. We have analyzed the proposed system with Reliability, Availability, Mean time to failure and Security(RAMS) theory in order to evaluate the effectiveness of proposed scheme. Theoretical analysis shows that the Mean Time To Failure(MTTF) of the proposed system is 2.5 times better than the traditional Triple Modular Redundancy(TMR). Furthermore, the fault injection experimental results reveal that the capability of tolerating Single Event Upsets(SEUs) in the proposed method increases up to 7.5 times with respect to a regular speed controller.展开更多
基金Project(2021zzts0775) supported by the Independent Exploration and Innovation Project for Graduate Students of Central South University,ChinaProject(2021JJ30053) supported by the Hunan Natural Science Foundation,China。
文摘The risk of failure of the control loop can occur when a high-speed maglev train runs on viaduct.Meanwhile,the failure of the levitation magnets which balances the gravity of the maglev train could cause the train collision with track.To study the dynamic response of the train and the viaduct when the levitation magnet control loop failure occurs,a high-speed maglev train-viaduct coupling model,which includes a maglev controller fitted by measured force-gap data and considers the actual structure of train and viaduct,is established.Then the accuracy and effectiveness of the established approach are validated by comparing the computed dynamic responses and frequencies with the measurement results.After that,the dynamic responses of maglev train and viaduct are discussed under normal operation and control loop failures,and the most disadvantageous combination of control loop failures is obtained.The results show that when a single control loop fails,it only has a great influence on the failed electromagnet,and the maglev response of adjacent electromagnets has no obvious change and no collision occurs.But there is a risk of rail collisions when the dual control loop fails.
文摘This paper introduces the high-speed electrical multiple unit (EMO) life cycle, including the design, manufacturing, testing, and maintenance stages. It also presents the train control and monitoring system (TCMS) software development platform, the TCMS testing and verification bench, the EMU driving simulation platform, and the EMU remote data transmittal and maintenance platform. All these platforms and benches combined together make up the EMU life cycle cost (LCC) system. Each platform facilitates EMU LCC management and is an important part of the system.
基金Supported by the National Natural Science Foundation of China under Grant Nos.60634010 and 60776829the State Key Laboratory of Rail Traffic Control and Safety (Contract No.RCS2008ZZ001 and RCS2010ZZ001),Beijing Jiaotong University
文摘Based on optimM velocity car-following model, in this paper, we propose a new railway tramc model for describing the process of train movement control. In the proposed model, we give an improved form of the optimal velocity function V^opt, which is considered as the desired velocity function for train movement control under different control conditions. In order to test the proposed model, we simulate and analyze the trajectories of train movements, moreover, discuss the relationship curves between the train allowable velocity and the site of objective point in detail. Analysis results indicate that the proposed model can well capture some realistic futures of train movement control.
基金the support from NSFC under Grant 61222105the 863 Plan of China under Grant 2014AA01A706+3 种基金the project of State Key Lab under Grant RCS2012ZT013the Key Project of Chinese Ministry of Education under Grant 313006the Key Project for Railway Ministry of China under Grant 2012X008-Athe project of State Key Lab under Grant No. RCS2011ZZ002
文摘With the fast development of highspeed railways,a call for fulfilling the notion of communication at "anytime,anywhere" for high-speed train passengers in the Train Operating Control System is on the way.In order to make a realization of that,new railway wireless communication networks are needed.The most promising one is the Long Term Evolution for Railway which will provide broadband access,fast handover,and reliable communication for high mobility users.However,with the increase of speed,the system is subjected to high bit error rate,Doppler frequency shift and handover failure just like other system does.This paper is trying to solve these problems by employing MIMO technique.Specifically,the goal is to provide higher data rate,higher reliability,less delay,and other relative quality of services for passengers.MIMO performance analysis,resource allocation,and access control for handover and various services in a two-hop model are proposed in this paper.Analytical results and simulation results show that the proposed model and schemes perform well in improving the system performances.
文摘The zone control subsystem is a real-time control system,which requests the correctness of the control process.Train tracing scene is an important function of the zone controller(ZC)in the communication based train control(CBTC)system.In the process of deep development and design,to ensure the safety of the system,the system needs to be modeled,simulated and verified to discover the system design flaws.Unified modeling language(UML)is combined with timed automata,and timed automata network models of train-filter and train tracing demarcation-point are established.At the same time,the verification tool of UPPAAL is applied to simulate the system,and verify the requirements of performance and function of system.The results show that the function of train tracing demaraction-point meets the requirements of system safety and limited activity.Therefore,the method is feasible and can be applied to the modeling and verification of other scenes of train control system.
文摘With rapid development of the railway traffic, the moving block signaling system (MBS) method has become more and more important for increasing the track capacity by allowing trains to run in a shorter time-headway while maintaining the required safety margins. In this framework, the tracking target point of the following train is moving forward with its leading train. This paper focuses on the energy saving tracking control of two successive trains in MBS. Nonlinear programming method is used to optimize the energy-saving speed trajectory of the following train. The real-time location of the leading train could be integrated into the optimization process. Due to simplicity, it can be used for online implementation. The feasibility and effectiveness are verified through simulation. The results show that the new method is efficient on energy saving even when disturbances present.
基金The project supported by National Natural Science Foundation of China under Grant Nos. 70225005 and 60634010, and the Science and Technology Foundation of Beijing Jiaotong University under Grant No. 2006RC044
文摘This paper presents a new cellular automaton (CA) model for train control system simulation. In the proposed CA model, the driver reactions to train movements are captured by some updated rules. The space-time diagram of traffic flow and the trajectory of train movement is used to obtain insight into the characteristic behavior of railway traffic flow. A number of simulation results demonstrate that the proposed CA model can be successfully used for the simulations of railway traffic. Not only the characteristic behavior of railway traffic flow can be reproduced, but also the simulation values of the minimum time headway are close to the theoretical values.
文摘Train control systems ensure the safety of railways. This paper begins with a summary of the typical train control systems in Japan and Europe. Based on this summary, the author then raises the following question regarding current train control systems: What approach should be adopted in order to enhance the functionality, safety, and reliability of train control systems and assist in commercial operations on railways? Next, the author provides a desirable architecture that is likely to assist with the development of new train control systems based on current information and communication technologies. A new unified train control system (UTCS) is proposed that is effective in enhancing the robustness and com- petitiveness of a train control system. The ultimate architecture of the UTCS will be only composed of essential elements such as point machines and level crossing control devices in the field. Finally, a pro- cessing method of the UTCS is discussed.
基金Supported by the National Natural Science Foundation of China(No.60830001)Program for New Century Excellent Talents in University(No.NCET-09-0206)+2 种基金the Key Project of State Key Lab.of Rail Traffic Control and Safety(No.RCS2008ZZ006)Program for Changjiang Scholars and Innovative Research Team in University(No.IRT0949)the Project of State Key Lab.of Rail Traffic Control and Safety(No.RCS2008ZT005)
文摘Communication based train control systems (CBTC) must work even in the worst situation-- train crossing. This paper models the propagation characteristics in one of the most common and piv- otal scenarios--train crossing in subway tunnels which is rarely mentioned in previous publications. Firstly, measurements for train crossing scenario at 2.4 GHz in a real subway line in Madrid have been made. The field measurement is the most reliable way to reveal the propagation characteristics involving shadowing effect and fast fading. Moreover, to precisely describe the fast fading distribu- tion and eliminate the inevitable weak points of traditional fitting way, a best numerical approxima- tion method using Legendre orthogonal polynomials has been proposed. Comparisons show that this method works better and is of greater physical significance. Finally, a complete statistical model is given and all the coefficients can be applied by system designers for the link and system level simu- lations.
文摘In case of the failure of Automatic Train Control (ATC), it is necessary to organize the train by Telephone Block System. In this paper, the APP system is built on the basis of local area network, which is focus on the simulation station map of Telephone Block System, Wain operation, equipment failure. This APP can vividly simulate the application of Telephone Block System in train urban transit organization.
基金Supported by the National Natural Science Foundation of China under Grant No. 70901006Research Foundation of Beijing Jiaotong University under Grant Nos. 2011JBM158, 2011JBM162Research Foundation of State Key Laboratory of Rail Traffic Control and Safety under Grant Nos. RCS2009ZT001, RCS2010ZZ001
文摘Based on the discrete time method, an effective movement control model is designed for a group of high- speed trains on a rail network. The purpose of the model is to investigate the specific traffic characteristics of high-speed trains under the interruption of stochastic irregular events. In the model, the high-speed rail traffic system is supposed to be equipped with the moving-block signalling system to guarantee maximum traversing capacity of the railway. To keep the safety of trains' movements, some operational strategies are proposed to control the movements of trains in the model, including traction operation, braking operation, and entering-station operation. The numerical simulations show that the designed model can well describe the movements of high-speed trains on the rail network. The research results can provide the useful information not only for investigating the propagation features of relevant delays under the irregular disturbance but also for rerouting and reseheduling trains on the rail network.
基金Projects(60404003,11202230)supported by the National Natural Science Foundation of China
文摘The application of new-designed levitation controller requires extensive validation prior to enter into commercial service. However, huge mounts of approximations and assumptions lead the theoretical analysis away from the engineering practice. The experimental methods are time-consuming and financial expensive, even unrealizable due to the lack of suitable sensors. Numerical simulations can bridge the gap between the theoretical analysis and experimental techniques. A complete overall dynamic model of maglev levitation system is derived in this work, which includes the simple-supported bridges, the calculation of electromagnetic force with more details, the stress of levitation modules and the cabin. Based on the aforementioned model, it shows that the inherent nonlinearity, inner coupling, misalignments between the sensors and actuators, and self-excited vibration are the main issues that should be considered during the design process of controller. Then, the backstepping controller based on the mathematical model of the module with reasonable simplifications is proposed, and the stability proofs are listed. To show the advantage of controller, two numerical simulation experiments are carried out. Finally, the results illustrating closed-loop performance are provided.
基金Projects(11302252,11202230)supported by the National Natural Science Foundation of China
文摘This work addresses the saturation influence of control voltage on the occurring of self-excited vibration of maglev vehicle-bridge interaction system, which greatly degrades the stability of the levitation control, decreases the ride comfort, and restricts the cost of the whole system. Firstly, the interaction model of vehicle-bridge system is developed. Based on the interaction model, the relationship between the control voltage and vibration frequency is solved. Then, the variation of the effective direct component and fundamental harmonic are discussed. Furthermore, from the perspective of energy transmission between the levitation system and bridge, the principle underlying the self-excited vibration is explored, and the influence on the stability is discussed. Finally, in terms of the variation of the characteristic roots, the influence is analyzed further and some conclusions are obtained. This study provides a theoretical guidance for mastering the self-excited vibration problems.
基金Project(2009BAG12A04-A11)supported by the National Key Technology R&D Program in the"11-th Five-year Plan"of ChinaProjects(51275432,51005190)supported by the National Natural Science Foundation of ChinaProject(SWJTU09ZT23)supported by University Doctor Academics Particularly Science Research Fund,China
文摘Operation safety and stability of the train mainly depend on the interaction between the wheel and rail.Knowledge of wheel/rail contact force is important for vehicle control systems that aim to enhance vehicle stability and passenger safety.Since wheel/rail contact forces of high-speed train are very difficult to measure directly,a new estimation process for wheel/rail contact forces was introduced in this work.Based on the state space equation,dynamic programming methods and the Bellman principle of optimality,the main theoretical derivation of the inversion mathematical model was given.The new method overcomes the weakness of large fluctuations which exist in current inverse techniques.High-speed vehicle was chosen as the research object,accelerations of axle box as input conditions,10 degrees of freedom vertical vibration model and 17 degrees of freedom lateral vibration model were established,respectively.Under 250 km/h,the vertical and lateral wheel/rail forces were identified.From the time domain and frequency domain,the comparison of the results between inverse and SIMPACK models were given.The results show that the inverse mathematical model has high precision for inversing the wheel/rail contact forces of an operation high-speed vehicle.
文摘With the progress of the railway technology, the railway transportation is becoming more efficient, intelligent and faster. High speed trains, as a major part of the railway transportation, are engaged with passenger's safety, and therefore the reliability issue is very important in such vital systems. In this paper, a dependable speed controller core based on FPGA has been developed for high speed trains. To improve the reliability and mitigate single upset faults on basic speed controller, this paper proposes a new effective method which is based on hardware redundancy. In the proposed Hybrid Dual Duplex Redundancy(HDDR) method, the original controller is quadruplicated and correct values are voted through the comparator and error detection unit. We have analyzed the proposed system with Reliability, Availability, Mean time to failure and Security(RAMS) theory in order to evaluate the effectiveness of proposed scheme. Theoretical analysis shows that the Mean Time To Failure(MTTF) of the proposed system is 2.5 times better than the traditional Triple Modular Redundancy(TMR). Furthermore, the fault injection experimental results reveal that the capability of tolerating Single Event Upsets(SEUs) in the proposed method increases up to 7.5 times with respect to a regular speed controller.