期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于深度强化学习DDDQN的高速列车智能调度调整方法
被引量:
1
1
作者
吴卫
阴佳腾
+1 位作者
陈照森
唐涛
《铁道科学与工程学报》
EI
CAS
CSCD
北大核心
2024年第4期1298-1308,共11页
在高速铁路系统的日常运营中,列车经常受到各种突发事件的干扰而导致晚点,严重影响旅客出行体验。为在短时间内制定出列车运行调整方案并尽可能缩短列车晚点时间,提出一种将深度强化学习与整数规划模型相结合的列车智能调度调整方法(DDD...
在高速铁路系统的日常运营中,列车经常受到各种突发事件的干扰而导致晚点,严重影响旅客出行体验。为在短时间内制定出列车运行调整方案并尽可能缩短列车晚点时间,提出一种将深度强化学习与整数规划模型相结合的列车智能调度调整方法(DDDQN)。首先,将线路划分为多个轨道区段相连接的形式,并基于车间作业调度问题,以最小化所有列车总晚点时间为目标,构建描述列车运行过程的整数规划模型。之后,将各列车视为智能体,根据实际运营需求定义了多智能体的状态、动作以及回报函数,并构造了2个深度神经网络以近似值函数。最后,结合上述整数规划模型设计了DDDQN的训练方法,先利用智能体在仿真环境中探索求出问题可行解,并通过2个神经网络之间的“互馈”机制,实现神经网络参数的更新。在此基础上求解整数规划模型,即可在短时间内得到问题最优解。利用京张高铁实际线路数据和运营数据进行仿真实验,通过比较3种不同求解方法在10个不同突发事件场景下得到的列车总晚点时间和求解时间,验证了所提出的DDDQN模型可以在短时间内得到问题的最优解,可降低至多30.43%的列车晚点时间以及至多68.33%的求解时间。DDDQN为提升高速铁路系统在突发事件下的应急处置能力以及运输组织效率提供了一种智能化的方法与参考。
展开更多
关键词
列车智能调度调整
列车
晚点时间
深度强化学习
整数规划模型
神经网络
下载PDF
职称材料
题名
基于深度强化学习DDDQN的高速列车智能调度调整方法
被引量:
1
1
作者
吴卫
阴佳腾
陈照森
唐涛
机构
北京和利时系统工程有限公司
北京交通大学轨道交通控制与安全国家重点实验室
出处
《铁道科学与工程学报》
EI
CAS
CSCD
北大核心
2024年第4期1298-1308,共11页
基金
国家自然科学基金“基础科学中心项目”(72288101)
国家自然科学基金“优青”项目(72322022)
先进轨道交通自主运行全国重点实验室项目(RAO2023ZZ001)。
文摘
在高速铁路系统的日常运营中,列车经常受到各种突发事件的干扰而导致晚点,严重影响旅客出行体验。为在短时间内制定出列车运行调整方案并尽可能缩短列车晚点时间,提出一种将深度强化学习与整数规划模型相结合的列车智能调度调整方法(DDDQN)。首先,将线路划分为多个轨道区段相连接的形式,并基于车间作业调度问题,以最小化所有列车总晚点时间为目标,构建描述列车运行过程的整数规划模型。之后,将各列车视为智能体,根据实际运营需求定义了多智能体的状态、动作以及回报函数,并构造了2个深度神经网络以近似值函数。最后,结合上述整数规划模型设计了DDDQN的训练方法,先利用智能体在仿真环境中探索求出问题可行解,并通过2个神经网络之间的“互馈”机制,实现神经网络参数的更新。在此基础上求解整数规划模型,即可在短时间内得到问题最优解。利用京张高铁实际线路数据和运营数据进行仿真实验,通过比较3种不同求解方法在10个不同突发事件场景下得到的列车总晚点时间和求解时间,验证了所提出的DDDQN模型可以在短时间内得到问题的最优解,可降低至多30.43%的列车晚点时间以及至多68.33%的求解时间。DDDQN为提升高速铁路系统在突发事件下的应急处置能力以及运输组织效率提供了一种智能化的方法与参考。
关键词
列车智能调度调整
列车
晚点时间
深度强化学习
整数规划模型
神经网络
Keywords
intelligent train rescheduling
train delay time
deep reinforcement learning
integer programming
neural network
分类号
U292.4 [交通运输工程—交通运输规划与管理]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于深度强化学习DDDQN的高速列车智能调度调整方法
吴卫
阴佳腾
陈照森
唐涛
《铁道科学与工程学报》
EI
CAS
CSCD
北大核心
2024
1
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部