期刊文献+
共找到20篇文章
< 1 >
每页显示 20 50 100
高速列车气动力作用下跨线铁路斜拉桥及桥上轨道结构的动力响应 被引量:2
1
作者 闫斌 陈玥 戴公连 《中国铁道科学》 EI CAS CSCD 北大核心 2014年第5期24-29,共6页
将列车高速运行产生的空间流场视为黏性、可压缩的非定常流,采用滑移网格法建立高速列车和跨线预应力混凝土斜拉桥流场模型,分析列车分别以350和500km·h-1速度从距离轨面高7.25m的预应力混凝土斜拉桥下穿过时该跨线桥受到的气动力... 将列车高速运行产生的空间流场视为黏性、可压缩的非定常流,采用滑移网格法建立高速列车和跨线预应力混凝土斜拉桥流场模型,分析列车分别以350和500km·h-1速度从距离轨面高7.25m的预应力混凝土斜拉桥下穿过时该跨线桥受到的气动力影响。基于建立的合拢阶段斜拉桥、运营阶段斜拉桥—轨道系统的空间分析模型,分析高速列车气动力引起的跨线斜拉桥及桥上无缝线路的动力响应。研究表明,高速列车尾流对斜拉桥的气动力作用大于列车头,列车正上方梁体所受气动力最大;列车气动效应对合拢阶段斜拉桥位移影响极小;考虑轨道结构后,斜拉桥横向位移和扭转略有增大,列车气动力引起的跨线斜拉桥上钢轨应力和横向变形最大值分别为0.18MPa和0.28mm,剪力卡榫及桥塔所受横向力最大值为158kN。 展开更多
关键词 跨线斜拉桥 预应力混凝土桥 桥上轨道结构 列车气动力 动力响应
下载PDF
列车空气动力性能与流线型头部外形 被引量:42
2
作者 田红旗 周丹 许平 《中国铁道科学》 EI CAS CSCD 北大核心 2006年第3期47-55,共9页
采用数值计算、动模型试验、风洞试验、实车试验和理论分析等方法,研究列车流线型头部长度、宽度、高度及耦合外形对列车交会压力波、空气阻力和升力的影响,得到一系列理论关系式。研究结果表明:①增加列车流线型头部长度,可以有效地改... 采用数值计算、动模型试验、风洞试验、实车试验和理论分析等方法,研究列车流线型头部长度、宽度、高度及耦合外形对列车交会压力波、空气阻力和升力的影响,得到一系列理论关系式。研究结果表明:①增加列车流线型头部长度,可以有效地改善列车空气动力性能,列车交会压力波随流线型头部长度增加而呈对数减小,头车阻力、升力绝对值均随流线型头部长度的增加呈线性减小,尾车阻力与流线型头部长度呈二次幂减小;②流线型头部纵向对称面最大控制型线从外凸到内凹,列车空气阻力、空气升力和交会压力波基本不变,减小鼻尖部位过渡曲线的曲率半径可以有效降低列车交会压力波;③流线型头部俯视最大控制型线为方形时产生的交会压力波最小,尖梭形的头车空气阻力和升力绝对值较小;④减小列车空气阻力和降低列车交会压力波,既矛盾又统一,列车气动头部外形设计需要综合考虑各种因素。 展开更多
关键词 列车气动力性能 流线型头部外形 列车空气阻力 空气升力 列车交会压力波
下载PDF
风雨耦合作用下高速列车气动性能的风洞试验研究 被引量:4
3
作者 彭益华 何旭辉 +1 位作者 敬海泉 谢能超 《中南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2021年第9期3353-3365,共13页
针对风雨耦合作用下高速列车的气动特性问题,在大气边界层风洞中搭建风雨耦合作用试验系统,以CRH2型列车为研究对象,开展高速列车在风雨环境下的静风荷载试验;分析列车在风雨耦合作用下的气动力系数,探明不同风偏角时降雨强度对列车头... 针对风雨耦合作用下高速列车的气动特性问题,在大气边界层风洞中搭建风雨耦合作用试验系统,以CRH2型列车为研究对象,开展高速列车在风雨环境下的静风荷载试验;分析列车在风雨耦合作用下的气动力系数,探明不同风偏角时降雨强度对列车头车和中车气动力系数的影响规律。研究结果表明:降雨对列车头车和中车气动力系数的影响不容忽视,降雨强度越大,对气动力系数的影响越显著;降雨增大头车和中车的阻力系数,在一定程度上增大侧偏力矩系数,降低侧力系数、升力系数与俯仰力矩系数,对倾覆力矩系数影响较小;在不同风偏角时,列车气动特性受降雨强度的影响程度不同,头车气动力系数在风偏角为60°时受降雨影响较大,中车阻力系数在风偏角为20°时受降雨影响较大,其余各气动力系数在风偏角为60°时受降雨影响较大。 展开更多
关键词 风雨耦合作用 高速列车气动力 风偏角 风洞试验
下载PDF
横风下列车平顺化对气动特性的影响 被引量:13
4
作者 梁习锋 邹涌 刘宏康 《铁道科学与工程学报》 EI CAS CSCD 北大核心 2022年第9期2498-2506,共9页
由于横风下运行的高速列车气动特性恶化,面临侧翻的风险,并且转向架和风挡对高速列车周围的流场及气动特性影响较大,会加剧横风下的不稳定性,采用改进的延迟分离涡模拟(IDDES)方法研究横风作用下转向架和风挡的平顺化设计对高速列车气... 由于横风下运行的高速列车气动特性恶化,面临侧翻的风险,并且转向架和风挡对高速列车周围的流场及气动特性影响较大,会加剧横风下的不稳定性,采用改进的延迟分离涡模拟(IDDES)方法研究横风作用下转向架和风挡的平顺化设计对高速列车气动特性的影响。研究结果表明,在横风下平顺化列车模型由于结构简单,气动阻力更小,同时由于背风侧大尺度涡流引起的负表面压力,侧向力更大,而在原始模型中转向架减弱了大尺度涡流对高速列车背风面表面压力的影响。转向架在列车底部产生了大量的旋涡,是原始模型和平顺化模型中流场出现差异的主要原因,风挡结构比转向架简单,对流场的扰动效果弱,但风挡表面压力对气动阻力会产生较大影响。在频谱分析中,由于原始模型中转向架引起的扰动,高速列车气动力震荡的幅值更大。转向架产生的大量小尺度涡与大尺度涡相互作用并削弱了大尺度涡对高速列车的影响,从而导致原始模型中气动力的主频率消失。此外,转向架产生的小尺度涡加剧了流动的混乱程度,这些涡在横风作用下被推离车体,影响测点处列车风分布,在阵风分析中导致各次运行间差异较大。原始模型中列车风的峰值出现在车头部分的轨道高度处,会对轨道旁的设备和施工人员产生威胁。 展开更多
关键词 平顺化设计 转向架 横风 列车 列车气动力学。
下载PDF
高速列车地面效应数值模拟研究 被引量:17
5
作者 孙振旭 郭迪龙 +1 位作者 姚远 杨国伟 《计算物理》 CSCD 北大核心 2013年第1期61-69,共9页
采用定常RANS方法对高速列车的地面效应进行分析,研究地面效应影响下高速列车气动力的变化规律.研究地面效应对不同侧偏角下高速列车气动力的影响,发现地面效应对0°侧偏角下的气动力影响最大,并随着侧偏角的增大地面效应的影响逐... 采用定常RANS方法对高速列车的地面效应进行分析,研究地面效应影响下高速列车气动力的变化规律.研究地面效应对不同侧偏角下高速列车气动力的影响,发现地面效应对0°侧偏角下的气动力影响最大,并随着侧偏角的增大地面效应的影响逐渐变小;研究当列车与地面相对高度发生变化时高速列车气动力的变化规律,数值模拟结果揭示了高速列车气动升力存在的升力翻转效应,并对不同高度下列车底面的压力脉冲变化规律进行分析. 展开更多
关键词 地面效应 湍流模式 侧偏角 高速列车气动力 升力翻转
下载PDF
横向风与列车风联合作用下车桥系统绕流分析 被引量:2
6
作者 黄林 廖海黎 李永乐 《铁道科学与工程学报》 CAS CSCD 北大核心 2006年第6期61-65,共5页
采用3维定常不可压缩雷诺平均N-S方程,结合RNGk-ε湍流模型,利用多重参考系法,对横向风作用下ICE高速列车在日本屋代南桥上运行的绕流进行分析。结果表明:列车风对流场的影响主要表现在对列车表面附近、桥面、挡风墙间的局部流场的影响... 采用3维定常不可压缩雷诺平均N-S方程,结合RNGk-ε湍流模型,利用多重参考系法,对横向风作用下ICE高速列车在日本屋代南桥上运行的绕流进行分析。结果表明:列车风对流场的影响主要表现在对列车表面附近、桥面、挡风墙间的局部流场的影响;列车运行时对头部、尾部附近的空气有排挤、拖曳作用;列车尾部靠迎风侧有一个很强的旋涡;列车风对列车中部附近流场的影响很小,对列车的阻力、横向力、升力、摇头力矩影响较大;列车风的作用使整个列车产生一种向上提升和沿横风向摇头的作用,列车风对列车附近区域桥梁的气动力有明显影响。 展开更多
关键词 多重参考系法 列车 横向风 流场 列车气动力 桥梁气动力
下载PDF
铁路声屏障抗疲劳性能试验机设计 被引量:1
7
作者 刘烁 洪蔚 +1 位作者 李鹏 董大为 《铁路节能环保与安全卫生》 2020年第6期5-7,51,共4页
铁路多采用声屏障措施以减少运行产生的噪声污染,抗疲劳性能是声屏障研发设计中的一项重要指标。在阐述声屏障抗疲劳性能的基础上,结合列车脉动风压作用及声屏障特点,从设计背景、主要结构和设备可靠性等方面设计一种适用于铁路声屏障... 铁路多采用声屏障措施以减少运行产生的噪声污染,抗疲劳性能是声屏障研发设计中的一项重要指标。在阐述声屏障抗疲劳性能的基础上,结合列车脉动风压作用及声屏障特点,从设计背景、主要结构和设备可靠性等方面设计一种适用于铁路声屏障抗疲劳试验的疲劳试验机,并对其应用前景进行分析。 展开更多
关键词 声屏障 列车气动力 抗疲劳性能 试验机
下载PDF
Effect of simplifying bogie regions on aerodynamic performance of high-speed train 被引量:13
8
作者 ZHANG Jie ADAMU Abdulmalik +2 位作者 SU Xin-chao GUO Zhan-hao GAO Guang-jun 《Journal of Central South University》 SCIE EI CAS CSCD 2022年第5期1717-1734,共18页
An investigation of the effect of simplifying bogie regions on the aerodynamic performance of a high-speed train was carried out by studying four train models,to explore possible ways to optimise the train underbody s... An investigation of the effect of simplifying bogie regions on the aerodynamic performance of a high-speed train was carried out by studying four train models,to explore possible ways to optimise the train underbody structure,improve the underbody aerodynamic performance,and reduce the aerodynamic drag.The shear stress transport(SST)k-ωturbulence model was used to study the airflow features of the high-speed train with different bogie regions at Re=2.25×10^(6).The calculated aerodynamic drag and surface pressure were compared with the experimental benchmark of wind tunnel tests.The results show that the SST k-ωmodel presents high accuracy in predicting the flow fields around the train,and the numerical results closely agree with the experimental data.Compared with the train with simplified bogies,the aerodynamic drag of the train with a smooth surface and the train with enclosed bogie cavities/inter-carriage gaps decreases by 38.2%and 30.3%,respectively,while it increases by 10.8%for the train with cavities but no bogies.Thus,enclosing bogie cavities shows a good capability of aerodynamic drag reduction for a new generation of highspeed trains. 展开更多
关键词 high-speed train aerodynamic drag RANS method BOGIE bogie cavity
下载PDF
Numerical investigation of influence of pantograph parameters and train length on aerodynamic drag of high-speed train 被引量:11
9
作者 SUN Zhi-kun WANG Tian-tian WU Fan 《Journal of Central South University》 SCIE EI CAS CSCD 2020年第4期1334-1350,共17页
This study investigates the influence of different pantograph parameters and train length on the aerodynamic drag of high-speed train by the delayed detached eddy simulation(DDES) method. The train geometry considered... This study investigates the influence of different pantograph parameters and train length on the aerodynamic drag of high-speed train by the delayed detached eddy simulation(DDES) method. The train geometry considered is the high-speed train with pantographs, and the different versions have 3, 5, 8, 10, 12, 16 and 17 cars. The numerical results are verified by the wind tunnel test with 3.6% difference. The influences of the number of cars and the position, quantity and configuration of pantographs on flow field around high-speed train and wake vortices are analyzed. The aerodynamic drag of middle cars gradually decreases along the flow direction. The aerodynamic drag of pantographs decreases with its backward shift, and that of the first pantograph decreases significantly. As the number of pantographs increases, its effect on the aerodynamic drag decrease of rear cars is more significant. The engineering application equation for the aerodynamic drag of high-speed train with pantographs is proposed. For the 10-car and 17-car train, the differences of total aerodynamic drag between the equation and the simulation results are 1.2% and 0.4%, respectively. The equation generalized in this study could well guide the design phase of high-speed train. 展开更多
关键词 high-speed train PANTOGRAPH train length aerodynamic drag
下载PDF
Comparative investigations of pressure waves induced by trains passing through a tunnel with different speed modes 被引量:6
10
作者 ZHOU Miao-miao LIU Tang-hong +2 位作者 XIAYu-tao LIWen-hui CHEN Zheng-wei 《Journal of Central South University》 SCIE EI CAS CSCD 2022年第8期2639-2653,共15页
Pressure waves induced by high-speed trains passing through a tunnel have adverse effects on train structures and passenger comfort. These adverse effects can be alleviated when the train passing through the tunnel wi... Pressure waves induced by high-speed trains passing through a tunnel have adverse effects on train structures and passenger comfort. These adverse effects can be alleviated when the train passing through the tunnel with a speed mode of deceleration. Thus, to investigate the effect of speed modes on pressure waves, three-dimensional compressible unsteady Reynolds-averaged Navier-Stokes simulations and the sliding mesh are used to simulate pressure waves on train surfaces and tunnel walls when trains passing through a tunnel with three different speed modes(a constant speed at350 km/h, a uniform deceleration from 350 to 300 km/h, and another uniform deceleration from 350 to 250 km/h).Compared with the constant speed, the peak-to-peak of the train surface pressure under the other two speed modes reaches a maximum difference of 11.0%. The maximum positive pressure difference of the tunnel wall under different speed modes is caused by the different attenuation of the friction effect when the train enters the tunnel, and the maximum difference is 12.8%. The difference of the maximum negative pressure on the tunnel wall is caused by the different speed and pressure wave intensity of the train arriving at the same measuring point in different speed modes,and the maximum difference is 15.8%. Hence, it can be concluded that a speed mode of deceleration for trains passing a tunnel can effectively alleviate the aerodynamic effect in the tunnel, especially for the pressure on the tunnel wall. 展开更多
关键词 high-speed trains tunnel aerodynamics pressure wave DECELERATION
下载PDF
Longitudinal type-line optimization of high-speed train for low aerodynamic noise 被引量:4
11
作者 肖友刚 杨群 +1 位作者 孙亮 时彧 《Journal of Central South University》 SCIE EI CAS 2014年第6期2494-2500,共7页
The basic head shape of high-speed train is determined by its longitudinal type-line(LTL),so it is crucial to optimize its aerodynamic performance.Based on the parametric modeling of LTL constructed by non-uniform rel... The basic head shape of high-speed train is determined by its longitudinal type-line(LTL),so it is crucial to optimize its aerodynamic performance.Based on the parametric modeling of LTL constructed by non-uniform relational B-spline(NURBS)and the fluctuation pressure obtained by large eddy simulation(LES),the Kriging surrogate model(KSM)of LTL was constructed for low aerodynamic noise,and the accuracy of the KSM was improved gradually by adding the sample point with maximum expected improvement(EI)and the optimal point from optimization.The optimal objective was searched with genetic algorithm(GA).The results show that the total fluctuation pressure level(FPL)of the optimal LTL can be 8.7 dB less than that of original one,and the shape optimization method is feasible for low aerodynamic noise design. 展开更多
关键词 longitudinal type-line non-uniform relational B-spline (NURBS) aerodynamic noise fluctuation pressure level (FPL) shape optimization
下载PDF
Dynamic behaviors and mitigation measures of a train passing through windbreak transitions from ground to cutting 被引量:2
12
作者 CHEN Zheng-wei LIU Tang-hong +3 位作者 GUO Zi-jian HUO Xiao-shuai LIWen-hui XIAYu-tao 《Journal of Central South University》 SCIE EI CAS CSCD 2022年第8期2675-2689,共15页
In this paper,the effects of a right-angle windbreak transition(RWT)from the flat ground to cutting on train aerodynamic and dynamic responses were investigated,then a mitigation measure,an oblique structure transitio... In this paper,the effects of a right-angle windbreak transition(RWT)from the flat ground to cutting on train aerodynamic and dynamic responses were investigated,then a mitigation measure,an oblique structure transition(OST)was proposed to reduce the impact of RWT on the train aerodynamic and dynamic performance.The results showed that in the RWT region,the airflow was divided into two parts.One part of the airflow induced a strong backflow in the flat ground position,and the other part of the airflow induced a strong backflow in the cutting position.Therefore,there were two lateral impacts on the train.For the head car with the OST,the drop ratios of the peak-to-peak values compared with RWT were 47%,40%,and 52%for the side force coefficient C_(Fy),lift force coefficient C_(Fz) and overturning moment coefficient C_(Mx),respectively.For the peak-to-peak value of the dynamic parameters,the drop ratios of OST compared with RWT were all larger than 50%.The maximum dynamic overturning coefficients for RWT and OST were 0.75 and 0.3,respectively. 展开更多
关键词 high-speed train windbreak wall CROSSWIND CFD train aerodynamics vehicle system dynamics
下载PDF
Wind tunnel tests on aerodynamic characteristics of vehicles on same-storey highway and rail bridge under crosswind 被引量:1
13
作者 ZOU Yun-feng XUE Fan-rong +2 位作者 HE Xu-hui HAN Yan LIU Qing-kuan 《Journal of Central South University》 SCIE EI CAS CSCD 2022年第8期2513-2531,共19页
In recent years,the safety and comfort of road vehicles driving on bridges under crosswinds have attracted more attention due to frequent occurrences of wind-induced disasters.This study focuses on a container truck a... In recent years,the safety and comfort of road vehicles driving on bridges under crosswinds have attracted more attention due to frequent occurrences of wind-induced disasters.This study focuses on a container truck and CRH2 high-speed train as research targets.Wind tunnel experiments are performed to investigate shielding effects of trains on aerodynamic characteristics of trucks.The results show that aerodynamic interference between trains and trucks varies with positions of trains(upstream,downstream)and trucks(upwind,downwind)and numbers of trains.To summarize,whether the train is upstream or downstream of tracks has basically no effect on aerodynamic forces,other than moments,of a truck driving on windward sides of bridges(upwind).In contrast,the presence of trains on the bridge deck has a significant impact on aerodynamic characteristics of a truck driving on leeward sides(downwind)at the same time.The best shielding effect on lateral forces of trucks occurs when the train is located downstream of tracks.Finally,the pressure measuring system shows that only lift forces on trains are affected by trucks,while other forces and moments are primarily affected by adjacent trains. 展开更多
关键词 same-storey highway and rail bridge container truck CRH2 high-speed train aerodynamic characteristics wind tunnel test CROSSWIND
下载PDF
Crosswind stability of high-speed trains in special cuts 被引量:3
14
作者 张洁 高广军 +1 位作者 刘堂红 李志伟 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第7期2849-2856,共8页
Analysis of the aerodynamic performance of high-speed trains in special cuts would provide references for the critical overturning velocity and complement the operation safety management under strong winds.This work w... Analysis of the aerodynamic performance of high-speed trains in special cuts would provide references for the critical overturning velocity and complement the operation safety management under strong winds.This work was conducted to investigate the flow structure around trains under different cut depths,slope angles using computational fluid dynamics(CFD).The high-speed train was considered with bogies and inter-carriage gaps.And the accuracy of the numerical method was validated by combining with the experimental data of wind tunnel tests.Then,the variations of aerodynamic forces and surface pressure distribution of the train were mainly analyzed.The results show that the surroundings of cuts along the railway line have a great effect on the crosswind stability of trains.With the slope angle and depth of the cut increasing,the coefficients of aerodynamic forces tend to reduce.An angle of 75°is chosen as the optimum one for the follow-up research.Under different depth conditions,the reasonable cut depth for high-speed trains to run safely is 3 m lower than that of the conventional cut whose slope ratio is 1:1.5.Furthermore,the windward slope angle is more important than the leeward one for the train aerodynamic performance.Due to the shield of appropriate cuts,the train body is in a minor positive pressure environment.Thus,designing a suitable cut can contribute to improving the operation safety of high-speed trains. 展开更多
关键词 high-speed train crosswind stability cut pressure distribution numerical simulation
下载PDF
Numerical simulatim of rainwater accumulation and flow characteristics over windshield of high-speed trains 被引量:6
15
作者 DU Jian LIANG Xi-feng +2 位作者 LI Gui-bo TIAN Hong-lei YANG Ming-zhi 《Journal of Central South University》 SCIE EI CAS CSCD 2020年第1期198-209,共12页
In this paper, a Euler-Lagrangian particle/fluid film/VOF coupled multiphase flow model is presented. Numerical simulations are conducted, and the rainwater accumulation and flow characteristics over two types of wind... In this paper, a Euler-Lagrangian particle/fluid film/VOF coupled multiphase flow model is presented. Numerical simulations are conducted, and the rainwater accumulation and flow characteristics over two types of windshields are studied based on the presented model. The results show that an uneven water film is formed over the windshield, with rain water accumulation occurring for the concave windshield but not for the convex windshield. At low speeds, the average fluid-film thickness for a concave windshield is larger than that of a convex windshield;however, a minor difference occurs between these two values at high speeds, and a critical velocity is observed for the two types of windshields. When the train velocity is less than the critical velocity, the fluid film at the lower part of the windshield and the train nose flows downward, and beyond the critical velocity, the fluid film over the entire windshield and train nose flows upward. 展开更多
关键词 high-speed train WINDSHIELD rainwater accumulation aerodynamic characteristics
下载PDF
Determination method of load balance ranges for train operation safety under strong wind 被引量:3
16
作者 田红旗 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第3期1146-1154,共9页
The aerodynamic performances of a passenger car and a box car with different heights of windbreak walls under strong wind were studied using the numerical simulations, and the changes of aerodynamic side force, lift f... The aerodynamic performances of a passenger car and a box car with different heights of windbreak walls under strong wind were studied using the numerical simulations, and the changes of aerodynamic side force, lift force and overturning moment with different wind speeds and wall heights were calculated. According to the principle of static moment balance of vehicles, the overturning coefficients of trains with different wind speeds and wall heights were obtained. Based on the influence of wind speed and wall height on the aerodynamic performance and the overturning stability of trains, a method of determination of the load balance ranges for the train operation safety was proposed, which made the overturning coefficient have nearly closed interval. A min(|A1|+|A2|), s.t. |A1|→|A2|(A1 refers to the downwind overturning coefficient and A2 refers to the upwind overturning coefficient)was found. This minimum value helps to lower the wall height as much as possible, and meanwhile, guarantees the operation safety of various types of trains under strong wind. This method has been used for the construction and improvement of the windbreak walls along the Lanzhou–Xinjiang railway(from Lanzhou to Urumqi, China). 展开更多
关键词 strong wind train load balance range overturning coefficient aerodynamic performance
下载PDF
Investigation of the aeroacoustic behavior and aerodynamic noise of a high-speed train pantograph 被引量:31
17
作者 ZHANG YaDong ZHANG JiYe +1 位作者 LI Tian ZHANG Liang 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2017年第4期561-575,共15页
As one of the main aerodynamic noise sources of high-speed trains, the pantograph is a complex structure containing many components, and the flow around it is extremely dynamic, with high-level turbulence. This study ... As one of the main aerodynamic noise sources of high-speed trains, the pantograph is a complex structure containing many components, and the flow around it is extremely dynamic, with high-level turbulence. This study analyzed the near-field unsteady flow around a pantograph using a large-eddy simulation(LES) with high-order finite difference schemes. The far-field aerodynamic noise from a pantograph was predicted using a computational fluid dynamics(CFD)/Ffowcs Williams-Hawkings(FW-H) acoustic analogy. The surface oscillating pressure data were also used in a boundary element method(BEM) acoustic analysis to predict the aerodynamic noise sources of a pantograph and the far-field sound radiation. The results indicated that the main aerodynamic noise sources of the pantograph were the panhead, base frame and knuckle. The panhead had the largest contribution to the far-field aerodynamic noise of the pantograph. The vortex shedding from the panhead generated tonal noise with the dominant peak corresponding to the vortex shedding frequency and the oscillating lift force exerted back on the fluid around the panhead.Additionally, the peak at the second harmonic frequency was associated with the oscillating drag force. The contribution of the knuckle-downstream direction to the pantograph aerodynamic noise was less than that of the knuckle-upstream direction of the pantograph, and the average sound pressure level(SPL) was 3.4 dBA. The directivity of the noise radiated exhibited a typical dipole pattern in which the noise directivity was obvious at the horizontal plane of θ=0°,the longitudinal plane of θ=120°,and the vertical plane of θ=90°. 展开更多
关键词 high-speed train PANTOGRAPH aerodynamic noise large eddy simulation FW-H acoustic analogy boundary element method noise contribution
原文传递
Multi-objective optimization design method of the high-speed train head 被引量:22
18
作者 Meng-ge YU Ji-ye ZHANG Wei-hua ZHANG 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2013年第9期631-641,共11页
With the continuous improvement of the train speed, the dynamic environment of trains turns out to be aerodynamic domination. Solving the aerodynamic problems has become one of the key factors of the high-speed train ... With the continuous improvement of the train speed, the dynamic environment of trains turns out to be aerodynamic domination. Solving the aerodynamic problems has become one of the key factors of the high-speed train head design. Given that the aerodynamic drag is a significant factor that restrains train speed and energy conservation, reducing the aerodynamic drag is thus an important consideration of the high-speed train head design. However, the reduction of the aerodynamic drag may increase other aerodynamic forces (moments), possibly deteriorating the operational safety of the train. The multi-objective optimization design method of the high-speed train head was proposed in this paper, and the aerodynamic drag and load reduction factor were set to be optimization objectives. The automatic multi-objective optimization design of the high-speed train head can be achieved by integrating a series of procedures into the multi-objective optimization algorithm, such as the establishment of 3D parametric model, the aerodynamic mesh generation, the calculation of the flow field around the train, and the vehicle system dynamics. The correlation between the optimization objectives and optimization variables was analyzed to obtain the most important optimization variables, and a further analysis of the nonlinear relationship between the key optimization variables and the optimization objectives was obtained. After optimization, the aerodynamic drag of optimized train was reduced by up to 4.15%, and the load reduction factor was reduced by up to 1.72%. 展开更多
关键词 High-speed train Multi-objective optimization Parametric model Aerodynamic drag Load reduction factor
原文传递
Three-dimensional aerodynamic optimization design of high-speed train nose based on GA-GRNN 被引量:24
19
作者 YAO ShuanBao GUO DiLong YANG GuoWei 《Science China(Technological Sciences)》 SCIE EI CAS 2012年第11期3118-3130,共13页
With the speed upgrade of the high-speed train,the aerodynamic drag becomes one of the key factors to restrain the train speed and energy saving.In order to reduce the aerodynamic drag of train head,a new parametric a... With the speed upgrade of the high-speed train,the aerodynamic drag becomes one of the key factors to restrain the train speed and energy saving.In order to reduce the aerodynamic drag of train head,a new parametric approach called local shape function(LSF) was adopted based on the free form surface deformation(FFD) method and a new efficient optimization method based on the response surface method(RSM) of GA-GRNN.The optimization results show that the parametric method can control the large deformation with a few design parameters,and can ensure the deformation zones smoothness and smooth transition of different deformation regions.With the same sample points for training,GA-GRNN performs better than GRNN to get the global optimal solution.As an example,the aerodynamic drag for a simplified shape with head + one carriage + tail train is reduced by 8.7%.The proposed optimization method is efficient for the engineering design of high-speed train. 展开更多
关键词 aerodynamic drag GA-GRNN PARAMETRIC high-speed trains
原文传递
Aerodynamic design for China new high-speed trains 被引量:18
20
作者 YANG GuoWei GUO DiLong +1 位作者 YAO ShuanBao LIU ChengHui 《Science China(Technological Sciences)》 SCIE EI CAS 2012年第7期1923-1928,共6页
High-speed trains have very complex running environments,which contain single-train running in open air,two-trains passing by in open air,single-train running in tunnel and two-trains passing by in tunnel.When the env... High-speed trains have very complex running environments,which contain single-train running in open air,two-trains passing by in open air,single-train running in tunnel and two-trains passing by in tunnel.When the environment wind appears,crosswind effects must be considered.Aerodynamic design of high-speed trains mainly aims at the drag,lift,moment,impulse pressure waves,aerodynamic noise,etc.at typical running conditions.In the paper,the aerodynamic design processes of CRH380A and 380B are introduced and the aerodynamic performances of different designs are analyzed and compared.Wind tunnel experiments and running tests indicate that the new generation of high-speed trains have excellent aerodynamic performances. 展开更多
关键词 aerodynamic design CFD wind-tunnel test high-speed train CRH380
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部