Calculation grid and turbulence model for numerical simulating pressure fluctuations in a high-speed train tunnel are studied through the comparison analysis of numerical simulation and moving model test.Compared the ...Calculation grid and turbulence model for numerical simulating pressure fluctuations in a high-speed train tunnel are studied through the comparison analysis of numerical simulation and moving model test.Compared the waveforms and peak-peak values of pressure fluctuations between numerical simulation and moving model test,the structured grid and the SST k-ωturbulence model are selected for numerical simulating the process of high-speed train passing through the tunnel.The largest value of pressure wave amplitudes of numerical simulation and moving model test meet each other.And the locations of the largest value of the initial compression and expansion wave amplitude of numerical simulation are in agreement with that of moving model test.The calculated pressure at the measurement point fully conforms to the propagation law of compression and expansion waves in the tunnel.展开更多
Trains are prone to delays and deviations from train operation plans during their operation because of internal or external disturbances. Delays may develop into operational conflicts between adjacent trains as a resu...Trains are prone to delays and deviations from train operation plans during their operation because of internal or external disturbances. Delays may develop into operational conflicts between adjacent trains as a result of delay propagation, which may disturb the arrangement of the train operation plan and threaten the operational safety of trains. Therefore, reliable conflict prediction results can be valuable references for dispatchers in making more efficient train operation adjustments when conflicts occur. In contrast to the traditional approach to conflict prediction that involves introducing random disturbances, this study addresses the issue of the fuzzification of time intervals in a train timetable based on historical statistics and the modeling of a high-speed railway train timetable based on the concept of a timed Petri net. To measure conflict prediction results more comprehensively, we divided conflicts into potential conflicts and certain conflicts and defined the judgment conditions for both. Two evaluation indexes, one for the deviation of a single train and one for the possibility of conflicts between adjacent train operations, were developed using a formalized computation method. Based on the temporal fuzzy reasoning method, with some adjustment, a new conflict prediction method is proposed, and the results of a simulation example for two scenarios are presented. The results prove that conflict prediction after fuzzy processing of the time intervals of a train timetable is more reliable and practical and can provide helpful information for use in train operation adjustment, train timetable improvement, and other purposes.展开更多
Train positioning is the key to ensure the transportation and efficient operation of the railway.Due to the low accuracy and the poor real-time of the train positioning,a train positioning system based on global navig...Train positioning is the key to ensure the transportation and efficient operation of the railway.Due to the low accuracy and the poor real-time of the train positioning,a train positioning system based on global navigation satellite system/inertial measurement unit/odometer(GNSS/IMU/ODO)combination framework and a train integrated positioning method based on grey neural network are put forward.A data updating method based on the established grey prediction model of train positioning is put forward,which uses the accumulation and summary of the grey theory for the rough prediction of the data.The purpose of the method is to reduce the noise of the original data.Moreover,the radial basis function(RBF)neural network is introduced to correct residual sequence of the grey prediction model.Compared with the single model calibration,this method can make full use of the advantages of each model,thus getting a high positioning accuracy in the case of small samples and poor information.Experiments show that the method has good real-time performance and high accuracy,and has certain application value.展开更多
High-speed train communication system is a typical high-mobility wireless communication network. Resource allocation problem has a great impact on the system performance. However, conventional resource allocation appr...High-speed train communication system is a typical high-mobility wireless communication network. Resource allocation problem has a great impact on the system performance. However, conventional resource allocation approaches in cellular network cannot be directly applied to this kind of special communication environment. A multidomain resource allocation strategy was proposed in the orthogonal frequency-division multiple access(OFDMA) of high-speed. By analyzing the effect of Doppler shift, sub-channels, antennas, time slots and power were jointly considered to maximize the energy efficiency under the constraint of total transmission power. For the purpose of reducing the computational complexity, noisy chaotic neural network algorithm was used to solve the above optimization problem. Simulation results showed that the proposed resource allocation method had a better performance than the traditional strategy.展开更多
This paper introduces the high-speed electrical multiple unit (EMO) life cycle, including the design, manufacturing, testing, and maintenance stages. It also presents the train control and monitoring system (TCMS)...This paper introduces the high-speed electrical multiple unit (EMO) life cycle, including the design, manufacturing, testing, and maintenance stages. It also presents the train control and monitoring system (TCMS) software development platform, the TCMS testing and verification bench, the EMU driving simulation platform, and the EMU remote data transmittal and maintenance platform. All these platforms and benches combined together make up the EMU life cycle cost (LCC) system. Each platform facilitates EMU LCC management and is an important part of the system.展开更多
Based on the discrete time method, an effective movement control model is designed for a group of high- speed trains on a rail network. The purpose of the model is to investigate the specific traffic characteristics o...Based on the discrete time method, an effective movement control model is designed for a group of high- speed trains on a rail network. The purpose of the model is to investigate the specific traffic characteristics of high-speed trains under the interruption of stochastic irregular events. In the model, the high-speed rail traffic system is supposed to be equipped with the moving-block signalling system to guarantee maximum traversing capacity of the railway. To keep the safety of trains' movements, some operational strategies are proposed to control the movements of trains in the model, including traction operation, braking operation, and entering-station operation. The numerical simulations show that the designed model can well describe the movements of high-speed trains on the rail network. The research results can provide the useful information not only for investigating the propagation features of relevant delays under the irregular disturbance but also for rerouting and reseheduling trains on the rail network.展开更多
In this paper, we propose an improved walk model for simulating the train movement on railway network. In the proposed method, walkers represent trains. The improved walk model is a kind of the network-based simulatio...In this paper, we propose an improved walk model for simulating the train movement on railway network. In the proposed method, walkers represent trains. The improved walk model is a kind of the network-based simulation analysis model. Using some management rules for walker movement, walker can dynamically determine its departure and arrival times at stations. In order to test the proposed method, we simulate the train movement on a part of railway network. The numerical simulation and analytical results demonstrate that the improved model is an effective tool for simulating the train movement on railway network. Moreover, it can well capture the characteristic behaviors of train scheduling in railway traffic.展开更多
To handle the handover challenge in Express Train Access Networks(ETAN).mobility fading effects in high speed railway environments should be addressed first.Based on the investigation of fading effects in this paper,w...To handle the handover challenge in Express Train Access Networks(ETAN).mobility fading effects in high speed railway environments should be addressed first.Based on the investigation of fading effects in this paper,we obtain two theoretical bounds:HOTiming upper bound and HO-Margin lower bound,which are helpful guidelines to study the handover challenge today and in the future.Then,we apply them to analyze performance of conventional handover technologies and our proposal in ETAN.This follow-up theory analyses and simulation experiment results demonstrate that the proposed handover solution can minimize handover time up to 4ms(which is the fastest one so far),and reduce HO-Margin to 0.16 dB at a train speed of 350km/h.展开更多
The significant increase in speed of high-speed train will cause the dynamic contact force of the pantograph-catenary system to fluctuate more severely,which poses a challenge to the study of the pantograph-catenary r...The significant increase in speed of high-speed train will cause the dynamic contact force of the pantograph-catenary system to fluctuate more severely,which poses a challenge to the study of the pantograph-catenary relationship and the design of highspeed pantographs.Good pantograph-catenary coupling quality is the essential condition to ensure safe and efficient operation of high-speed train,stable and reliable current collection,and reduction in the wear of contact wires and pantograph contact strips.Among them,the dynamic parameters of high-speed pantographs are crucial to pantograph-catenary coupling quality.With the reduction of the standard deviation of the pantograph-catenary contact force as the optimization goal,multi-parameter joint optimization designs for the high-speed pantograph with two contact strips at multiple running speeds are proposed.Moreover,combining the sensitivity analysis at the optimal solutions,with the parameters and characteristics of in-service DSA380 highspeed pantograph,the optimization proposal of DSA380 was given.展开更多
文摘Calculation grid and turbulence model for numerical simulating pressure fluctuations in a high-speed train tunnel are studied through the comparison analysis of numerical simulation and moving model test.Compared the waveforms and peak-peak values of pressure fluctuations between numerical simulation and moving model test,the structured grid and the SST k-ωturbulence model are selected for numerical simulating the process of high-speed train passing through the tunnel.The largest value of pressure wave amplitudes of numerical simulation and moving model test meet each other.And the locations of the largest value of the initial compression and expansion wave amplitude of numerical simulation are in agreement with that of moving model test.The calculated pressure at the measurement point fully conforms to the propagation law of compression and expansion waves in the tunnel.
文摘Trains are prone to delays and deviations from train operation plans during their operation because of internal or external disturbances. Delays may develop into operational conflicts between adjacent trains as a result of delay propagation, which may disturb the arrangement of the train operation plan and threaten the operational safety of trains. Therefore, reliable conflict prediction results can be valuable references for dispatchers in making more efficient train operation adjustments when conflicts occur. In contrast to the traditional approach to conflict prediction that involves introducing random disturbances, this study addresses the issue of the fuzzification of time intervals in a train timetable based on historical statistics and the modeling of a high-speed railway train timetable based on the concept of a timed Petri net. To measure conflict prediction results more comprehensively, we divided conflicts into potential conflicts and certain conflicts and defined the judgment conditions for both. Two evaluation indexes, one for the deviation of a single train and one for the possibility of conflicts between adjacent train operations, were developed using a formalized computation method. Based on the temporal fuzzy reasoning method, with some adjustment, a new conflict prediction method is proposed, and the results of a simulation example for two scenarios are presented. The results prove that conflict prediction after fuzzy processing of the time intervals of a train timetable is more reliable and practical and can provide helpful information for use in train operation adjustment, train timetable improvement, and other purposes.
基金Gansu Province Basic Research Innovation Group Plan(No.1606RJIA327)Natural Science Foundation of Gansu Province(No.1606RJYA225)+1 种基金Lanzhou Jiaotong University Youth Fund(No.2014031)Longyuan Youth Innovative Support Program(No.2016-43)
文摘Train positioning is the key to ensure the transportation and efficient operation of the railway.Due to the low accuracy and the poor real-time of the train positioning,a train positioning system based on global navigation satellite system/inertial measurement unit/odometer(GNSS/IMU/ODO)combination framework and a train integrated positioning method based on grey neural network are put forward.A data updating method based on the established grey prediction model of train positioning is put forward,which uses the accumulation and summary of the grey theory for the rough prediction of the data.The purpose of the method is to reduce the noise of the original data.Moreover,the radial basis function(RBF)neural network is introduced to correct residual sequence of the grey prediction model.Compared with the single model calibration,this method can make full use of the advantages of each model,thus getting a high positioning accuracy in the case of small samples and poor information.Experiments show that the method has good real-time performance and high accuracy,and has certain application value.
基金Supported by the National Natural Science Foundation of China(No.61302080)Scientific Research Starting Foundation of Fuzhou University(No.022572)Science and Technology Development Foundation of Fuzhou University(No.2013-XY-27)
文摘High-speed train communication system is a typical high-mobility wireless communication network. Resource allocation problem has a great impact on the system performance. However, conventional resource allocation approaches in cellular network cannot be directly applied to this kind of special communication environment. A multidomain resource allocation strategy was proposed in the orthogonal frequency-division multiple access(OFDMA) of high-speed. By analyzing the effect of Doppler shift, sub-channels, antennas, time slots and power were jointly considered to maximize the energy efficiency under the constraint of total transmission power. For the purpose of reducing the computational complexity, noisy chaotic neural network algorithm was used to solve the above optimization problem. Simulation results showed that the proposed resource allocation method had a better performance than the traditional strategy.
文摘This paper introduces the high-speed electrical multiple unit (EMO) life cycle, including the design, manufacturing, testing, and maintenance stages. It also presents the train control and monitoring system (TCMS) software development platform, the TCMS testing and verification bench, the EMU driving simulation platform, and the EMU remote data transmittal and maintenance platform. All these platforms and benches combined together make up the EMU life cycle cost (LCC) system. Each platform facilitates EMU LCC management and is an important part of the system.
基金Supported by the National Natural Science Foundation of China under Grant No. 70901006Research Foundation of Beijing Jiaotong University under Grant Nos. 2011JBM158, 2011JBM162Research Foundation of State Key Laboratory of Rail Traffic Control and Safety under Grant Nos. RCS2009ZT001, RCS2010ZZ001
文摘Based on the discrete time method, an effective movement control model is designed for a group of high- speed trains on a rail network. The purpose of the model is to investigate the specific traffic characteristics of high-speed trains under the interruption of stochastic irregular events. In the model, the high-speed rail traffic system is supposed to be equipped with the moving-block signalling system to guarantee maximum traversing capacity of the railway. To keep the safety of trains' movements, some operational strategies are proposed to control the movements of trains in the model, including traction operation, braking operation, and entering-station operation. The numerical simulations show that the designed model can well describe the movements of high-speed trains on the rail network. The research results can provide the useful information not only for investigating the propagation features of relevant delays under the irregular disturbance but also for rerouting and reseheduling trains on the rail network.
基金Supported by the National Natural Science Foundation of China under Grant Nos. 60634010 and 60776829New Century Excellent Talents in University under Grant No. NCET-06-0074
文摘In this paper, we propose an improved walk model for simulating the train movement on railway network. In the proposed method, walkers represent trains. The improved walk model is a kind of the network-based simulation analysis model. Using some management rules for walker movement, walker can dynamically determine its departure and arrival times at stations. In order to test the proposed method, we simulate the train movement on a part of railway network. The numerical simulation and analytical results demonstrate that the improved model is an effective tool for simulating the train movement on railway network. Moreover, it can well capture the characteristic behaviors of train scheduling in railway traffic.
基金supported by the National Basic Research Program of China (973 Program)(No.2012CB315606 and 2010CB328201)
文摘To handle the handover challenge in Express Train Access Networks(ETAN).mobility fading effects in high speed railway environments should be addressed first.Based on the investigation of fading effects in this paper,we obtain two theoretical bounds:HOTiming upper bound and HO-Margin lower bound,which are helpful guidelines to study the handover challenge today and in the future.Then,we apply them to analyze performance of conventional handover technologies and our proposal in ETAN.This follow-up theory analyses and simulation experiment results demonstrate that the proposed handover solution can minimize handover time up to 4ms(which is the fastest one so far),and reduce HO-Margin to 0.16 dB at a train speed of 350km/h.
基金the National Natural Science Foundation of China(Grant No.11672297)the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDB22020200).
文摘The significant increase in speed of high-speed train will cause the dynamic contact force of the pantograph-catenary system to fluctuate more severely,which poses a challenge to the study of the pantograph-catenary relationship and the design of highspeed pantographs.Good pantograph-catenary coupling quality is the essential condition to ensure safe and efficient operation of high-speed train,stable and reliable current collection,and reduction in the wear of contact wires and pantograph contact strips.Among them,the dynamic parameters of high-speed pantographs are crucial to pantograph-catenary coupling quality.With the reduction of the standard deviation of the pantograph-catenary contact force as the optimization goal,multi-parameter joint optimization designs for the high-speed pantograph with two contact strips at multiple running speeds are proposed.Moreover,combining the sensitivity analysis at the optimal solutions,with the parameters and characteristics of in-service DSA380 highspeed pantograph,the optimization proposal of DSA380 was given.