The EFVM (Vitoria Minas Railroad) is one of the main railways in Brazil. It transports freight trains of ore, 220 wagons each. These wagons have 2 boogies of 2 axles each and 32 metric tons on metre gauge. Elastic s...The EFVM (Vitoria Minas Railroad) is one of the main railways in Brazil. It transports freight trains of ore, 220 wagons each. These wagons have 2 boogies of 2 axles each and 32 metric tons on metre gauge. Elastic strains were measured on a special part of this railway due to these trains. The main load to evaluate stresses and strains was a G 16 Locomotive, a C-C kind from Vale, a Brazilian Company. The measurements were obtained by dynamic deflectometer installed on a main line of this railway, near Ipatinga, a city from Minas Gerais, one of Brazil states. This track was equipped to obtain stresses under an equal repeated static load A simulation of the stresses was made under critical strain by Ferrovia 1.0 software. It was also made an evaluation of unequal results from neighbor sleepers taking in comparison two equipped parts of this railway, one with compacted ballast and no compaction to the other. The results were strain limited, avoiding breakage or damage to the studied rails. This work analyses these measurements focusing on the improvement of track quality.展开更多
With the speed upgrade of the high-speed train,the aerodynamic drag becomes one of the key factors to restrain the train speed and energy saving.In order to reduce the aerodynamic drag of train head,a new parametric a...With the speed upgrade of the high-speed train,the aerodynamic drag becomes one of the key factors to restrain the train speed and energy saving.In order to reduce the aerodynamic drag of train head,a new parametric approach called local shape function(LSF) was adopted based on the free form surface deformation(FFD) method and a new efficient optimization method based on the response surface method(RSM) of GA-GRNN.The optimization results show that the parametric method can control the large deformation with a few design parameters,and can ensure the deformation zones smoothness and smooth transition of different deformation regions.With the same sample points for training,GA-GRNN performs better than GRNN to get the global optimal solution.As an example,the aerodynamic drag for a simplified shape with head + one carriage + tail train is reduced by 8.7%.The proposed optimization method is efficient for the engineering design of high-speed train.展开更多
Urban trains running on ground surface lead to evironmental ground vibrations in the vicinity of railwaylines. The complicated vibration source of the system can hardly be measured directly. The inversion methodology ...Urban trains running on ground surface lead to evironmental ground vibrations in the vicinity of railwaylines. The complicated vibration source of the system can hardly be measured directly. The inversion methodology in engineering seismology is borrowed here to study the dynamic exciting sourec, i.e., the wheel-rail unevenness. A dynamic coupled train-track-3D ground model is combined with a genetic algorithm for the inversion. The solution space of the inversion variables, the objective function and the solving genetic strategy of the inversion are determined, and a joint inversion for the wheel-rail unevenness source function and some track structure parameters is therefore designed. The wheel-rail unevenness PSD, being the source function of No. 13 Beijing urban railway, is obtained by the inversoin based on observed data in the field. The result indicates that the source function discribes the track unevenness in the range of wavelength over 1.2 m, and reflects properly wheel irregularites in the range of wavelength shorter than 1.2 m. It should be noticed that the urban rail traffic is not very fast, and this range of short wavelength is exactly corresponding to the main frequency band of environmental vibrations from the traffic. The unevenness of wavelength under 1.2 m is underestimated, and the ground vibration in the main frequency band must be underestimated consequently, if the track unevenness spectrum is taken as the source function. Rather than the track spectrum reflecting just the evenness of track, the wheel-rail spectrum expresses both the track unevenness and the irregularities of wheels, and therefore is more suitable to be the source function of urban railway traffic. It is also convinced that the exciting source inversion according to observed ground vibrations is an effective way to detect quantitatively the combined wheel-rail unevenness.展开更多
文摘The EFVM (Vitoria Minas Railroad) is one of the main railways in Brazil. It transports freight trains of ore, 220 wagons each. These wagons have 2 boogies of 2 axles each and 32 metric tons on metre gauge. Elastic strains were measured on a special part of this railway due to these trains. The main load to evaluate stresses and strains was a G 16 Locomotive, a C-C kind from Vale, a Brazilian Company. The measurements were obtained by dynamic deflectometer installed on a main line of this railway, near Ipatinga, a city from Minas Gerais, one of Brazil states. This track was equipped to obtain stresses under an equal repeated static load A simulation of the stresses was made under critical strain by Ferrovia 1.0 software. It was also made an evaluation of unequal results from neighbor sleepers taking in comparison two equipped parts of this railway, one with compacted ballast and no compaction to the other. The results were strain limited, avoiding breakage or damage to the studied rails. This work analyses these measurements focusing on the improvement of track quality.
基金supported by the National Basic Research Program of China ("973" Project) (Grant No. 2011CB711100)the National Hi-Tech Research and Development Program of China ("863" Project) (Grant No.2009BAQG12A03)Computing Facility for Computational Mechanics,Institute of Mechanics,Chinese Academy of Sciences
文摘With the speed upgrade of the high-speed train,the aerodynamic drag becomes one of the key factors to restrain the train speed and energy saving.In order to reduce the aerodynamic drag of train head,a new parametric approach called local shape function(LSF) was adopted based on the free form surface deformation(FFD) method and a new efficient optimization method based on the response surface method(RSM) of GA-GRNN.The optimization results show that the parametric method can control the large deformation with a few design parameters,and can ensure the deformation zones smoothness and smooth transition of different deformation regions.With the same sample points for training,GA-GRNN performs better than GRNN to get the global optimal solution.As an example,the aerodynamic drag for a simplified shape with head + one carriage + tail train is reduced by 8.7%.The proposed optimization method is efficient for the engineering design of high-speed train.
基金supported by the National Natural Science Foundation of China (Grant No. 50538030)
文摘Urban trains running on ground surface lead to evironmental ground vibrations in the vicinity of railwaylines. The complicated vibration source of the system can hardly be measured directly. The inversion methodology in engineering seismology is borrowed here to study the dynamic exciting sourec, i.e., the wheel-rail unevenness. A dynamic coupled train-track-3D ground model is combined with a genetic algorithm for the inversion. The solution space of the inversion variables, the objective function and the solving genetic strategy of the inversion are determined, and a joint inversion for the wheel-rail unevenness source function and some track structure parameters is therefore designed. The wheel-rail unevenness PSD, being the source function of No. 13 Beijing urban railway, is obtained by the inversoin based on observed data in the field. The result indicates that the source function discribes the track unevenness in the range of wavelength over 1.2 m, and reflects properly wheel irregularites in the range of wavelength shorter than 1.2 m. It should be noticed that the urban rail traffic is not very fast, and this range of short wavelength is exactly corresponding to the main frequency band of environmental vibrations from the traffic. The unevenness of wavelength under 1.2 m is underestimated, and the ground vibration in the main frequency band must be underestimated consequently, if the track unevenness spectrum is taken as the source function. Rather than the track spectrum reflecting just the evenness of track, the wheel-rail spectrum expresses both the track unevenness and the irregularities of wheels, and therefore is more suitable to be the source function of urban railway traffic. It is also convinced that the exciting source inversion according to observed ground vibrations is an effective way to detect quantitatively the combined wheel-rail unevenness.