In spite of the good performance of the steel plate shear wall(SPSW)in recent earthquakes and experimental studies,the need for huge columns to surround the infill plate is a major shortcoming of the system.This short...In spite of the good performance of the steel plate shear wall(SPSW)in recent earthquakes and experimental studies,the need for huge columns to surround the infill plate is a major shortcoming of the system.This shortcoming can be resolved by using semi-supported SPSW.The semi-supported SPSW has secondary columns that prevent the transfer of stress from the infill plate to the main columns.In spite of extensive experimental and numerical investigations on SPSWs,there are many ambiguities regarding the behavior of the semi-supported SPSW.Although stress in the columns is reduced,incomplete diagonal tension field action is formed in the infill plate that creates new problems.In this paper,a new type of semi-supported SPSW is presented in which the steel plate and the secondary columns are angled.The creation of the angle of the plate and the secondary column makes it possible to use the full capacity of the steel plate as well as the capacity of the secondary columns.Numerical results showed that the wall with a 60°angle has a favorable performance relative to the semi-supported wall.Moreover,with the 60°angle,stiffness,strength and energy absorption is increased.The angle of the secondary columns has little effect on the non-elastic stiffness.Nevertheless,using a wall with an angle of more than 90°can neutralize the wall’s behavior relative to conventional walls.Therefore,the wall with a 60°angle as an optimal angle is recommended.展开更多
The buckling resisting brace(BRB)is an efficient system against lateral loads that enjoy high seismic energy absorption capacity.Although desirable behavior of BRBs has been confirmed,the stiffness of the system is no...The buckling resisting brace(BRB)is an efficient system against lateral loads that enjoy high seismic energy absorption capacity.Although desirable behavior of BRBs has been confirmed,the stiffness of the system is not desirable that it can be compensated by changing the configuration of BRB braces.In so doing,the configuration in the form of double K(DK)is investigated to achieve more favorable behavior.Also,the required mathematical formulas were proposed to design the system.Comparison of DK system with other conventional BRB showed that the DK system has a better structural performance and is more economical(due to needing less core area)than other conventional BRB.Numerical results indicated that the DK system increases the lateral ultimate strength,lateral nonlinear stiffness,and energy absorption.Besides,the DK configuration reduces the axial forces created in columns in the nonlinear zone.Reducing material demand,created forces in the main frame,and also increasing of nonlinear stiffens by DK improve the structure’s safety.展开更多
To evaluate the strength attenuation law of soft rock in the western mining area of China, we established an evolution model for the strength parameters of soft mudstone at the post-peak stage by employing a tri-linea...To evaluate the strength attenuation law of soft rock in the western mining area of China, we established an evolution model for the strength parameters of soft mudstone at the post-peak stage by employing a tri-linear strain softening model. In the model, a stiffness degradation coefficient co and a softening modulus coefficient a were introduced to take into account the stiff- ness degradation, and the subsequent yield surfaces at post-peak stage were all assumed to meet the Molar-Coulomb yield criterion. Furthermore, attenuation laws of stiffness and strength parameters of soft mudstone were analyzed according to an engineering case. Finally, the model's accuracy was verified by comparison of results from numerical calculation and tri-axial compression tests. Results showed that the attenuation of the friction angle was dominated mainly by the instantaneous stress states and damage features, while the attenuation law of cohesion was also related to the plastic behavior. The degradation rates of strength param- eters decreased with increasing confining pressure and the friction angle tended towards its initial value. Residual strengths were also enhanced with increasing confming pressure. The results indicate that the evolution model can accurately describe the strain softening behavior of soft rock.展开更多
Objective: In pedicle screw fixation, the heads of monoaxial screws need to be directed in the same straight line to accommodate the rod placement by backing out during operation, which decreases the insertional torq...Objective: In pedicle screw fixation, the heads of monoaxial screws need to be directed in the same straight line to accommodate the rod placement by backing out during operation, which decreases the insertional torque and internal fixation strength. While polyaxial screws facilitate the assembly of the connecting rod, but its ball-in-cup locking mechanism reduces the static compressive bending yield strength as compared with monoaxial screws. Our study aimed to assess the mechanical performance of a modified pedicle screw. Methods: In this study, the tail of the screw body of the modified pedicle screw was designed to be a cylindershaped structure that well matched the inner wall of the screw head and the screw head only rotated around the cyclinder. Monoaxial screws, modified screws and polyaxial screws were respectively assembled into 3 groups ofvertebrectomy models simulated by ultra high molecular weight polyethylene (UHMWPE) blocks. This model was developed according to a standard for destructive mechanical testing published by the American Society for Testing Materials (ASTM F1717-04). Each screw design had 6 subgroups, including 3 for static tension, load compression and torsion tests, and the rest for dynamic compression tests. In dynamic tests, the cyclic loads were 25%, 50%, and 75% of the compressive bending ultimate loads respectively. Yield load, yield ultimate load, yield stiffness, torsional stiffness, cycles to failure and modes of failure for the 3 types of screws were recorded. The results of modified screws were compared with those ofmonoaxial and polyaxial screws. Results: In static tests, results of bending stiffness, yield load, yield torque and torsional stiffness indicated no significant differences between the modified and monoaxial screws (P〉0.05), but both differed significantly from those ofpolyaxial screws (P〈0.05). In dynamic compression tests, both modified and monoaxial screws showed failures that occurred at the insertion point of screw body into the UHMWPE block, while the polyaxial screw group showed screw body swung up and down the screw head because of loosening of the ball-in-cup mechanism. Conclusions: The modified screw is well-designed and biomechanically improved. And it can provide sufficient stability for segment fixation as monoaxial screws.展开更多
文摘In spite of the good performance of the steel plate shear wall(SPSW)in recent earthquakes and experimental studies,the need for huge columns to surround the infill plate is a major shortcoming of the system.This shortcoming can be resolved by using semi-supported SPSW.The semi-supported SPSW has secondary columns that prevent the transfer of stress from the infill plate to the main columns.In spite of extensive experimental and numerical investigations on SPSWs,there are many ambiguities regarding the behavior of the semi-supported SPSW.Although stress in the columns is reduced,incomplete diagonal tension field action is formed in the infill plate that creates new problems.In this paper,a new type of semi-supported SPSW is presented in which the steel plate and the secondary columns are angled.The creation of the angle of the plate and the secondary column makes it possible to use the full capacity of the steel plate as well as the capacity of the secondary columns.Numerical results showed that the wall with a 60°angle has a favorable performance relative to the semi-supported wall.Moreover,with the 60°angle,stiffness,strength and energy absorption is increased.The angle of the secondary columns has little effect on the non-elastic stiffness.Nevertheless,using a wall with an angle of more than 90°can neutralize the wall’s behavior relative to conventional walls.Therefore,the wall with a 60°angle as an optimal angle is recommended.
文摘The buckling resisting brace(BRB)is an efficient system against lateral loads that enjoy high seismic energy absorption capacity.Although desirable behavior of BRBs has been confirmed,the stiffness of the system is not desirable that it can be compensated by changing the configuration of BRB braces.In so doing,the configuration in the form of double K(DK)is investigated to achieve more favorable behavior.Also,the required mathematical formulas were proposed to design the system.Comparison of DK system with other conventional BRB showed that the DK system has a better structural performance and is more economical(due to needing less core area)than other conventional BRB.Numerical results indicated that the DK system increases the lateral ultimate strength,lateral nonlinear stiffness,and energy absorption.Besides,the DK configuration reduces the axial forces created in columns in the nonlinear zone.Reducing material demand,created forces in the main frame,and also increasing of nonlinear stiffens by DK improve the structure’s safety.
基金Project supported by the National Natural Science Foundation of China (No. 51174128), and the Specialized Research Fund for the Doctoral Program of Higher Education of China (No. 20123718110007)
文摘To evaluate the strength attenuation law of soft rock in the western mining area of China, we established an evolution model for the strength parameters of soft mudstone at the post-peak stage by employing a tri-linear strain softening model. In the model, a stiffness degradation coefficient co and a softening modulus coefficient a were introduced to take into account the stiff- ness degradation, and the subsequent yield surfaces at post-peak stage were all assumed to meet the Molar-Coulomb yield criterion. Furthermore, attenuation laws of stiffness and strength parameters of soft mudstone were analyzed according to an engineering case. Finally, the model's accuracy was verified by comparison of results from numerical calculation and tri-axial compression tests. Results showed that the attenuation of the friction angle was dominated mainly by the instantaneous stress states and damage features, while the attenuation law of cohesion was also related to the plastic behavior. The degradation rates of strength param- eters decreased with increasing confining pressure and the friction angle tended towards its initial value. Residual strengths were also enhanced with increasing confming pressure. The results indicate that the evolution model can accurately describe the strain softening behavior of soft rock.
文摘Objective: In pedicle screw fixation, the heads of monoaxial screws need to be directed in the same straight line to accommodate the rod placement by backing out during operation, which decreases the insertional torque and internal fixation strength. While polyaxial screws facilitate the assembly of the connecting rod, but its ball-in-cup locking mechanism reduces the static compressive bending yield strength as compared with monoaxial screws. Our study aimed to assess the mechanical performance of a modified pedicle screw. Methods: In this study, the tail of the screw body of the modified pedicle screw was designed to be a cylindershaped structure that well matched the inner wall of the screw head and the screw head only rotated around the cyclinder. Monoaxial screws, modified screws and polyaxial screws were respectively assembled into 3 groups ofvertebrectomy models simulated by ultra high molecular weight polyethylene (UHMWPE) blocks. This model was developed according to a standard for destructive mechanical testing published by the American Society for Testing Materials (ASTM F1717-04). Each screw design had 6 subgroups, including 3 for static tension, load compression and torsion tests, and the rest for dynamic compression tests. In dynamic tests, the cyclic loads were 25%, 50%, and 75% of the compressive bending ultimate loads respectively. Yield load, yield ultimate load, yield stiffness, torsional stiffness, cycles to failure and modes of failure for the 3 types of screws were recorded. The results of modified screws were compared with those ofmonoaxial and polyaxial screws. Results: In static tests, results of bending stiffness, yield load, yield torque and torsional stiffness indicated no significant differences between the modified and monoaxial screws (P〉0.05), but both differed significantly from those ofpolyaxial screws (P〈0.05). In dynamic compression tests, both modified and monoaxial screws showed failures that occurred at the insertion point of screw body into the UHMWPE block, while the polyaxial screw group showed screw body swung up and down the screw head because of loosening of the ball-in-cup mechanism. Conclusions: The modified screw is well-designed and biomechanically improved. And it can provide sufficient stability for segment fixation as monoaxial screws.