The dynamic interaction between tunnel lining and its surrounding soil is a complicated issue as the magnitude of seismic wave from bedrock to the structure can be easily influenced by the geometrical layout and struc...The dynamic interaction between tunnel lining and its surrounding soil is a complicated issue as the magnitude of seismic wave from bedrock to the structure can be easily influenced by the geometrical layout and structural stiffness of the tunnel.A series of numerical analysis was conducted to study the dynamic response of the tunnel lining of side-by-side and vertically stacked double-tube tunnel since the inertia and kinematic interactions between the tunnel lining and the surrounding soil during an earthquake could induce excessive stresses to the lining itself due to the stiffness variation between the lining and the soil.Real earthquake ground acceleration was used as an input motion in the dynamic analysis.The interactive behavior of bending moment and axial forces,and the displacement of the tunnels were used to evaluate the effect of tunnel geometrical layout on the performance of the lining.It is found that the effect of earthquake on the axial thrust of the lining is insignificant,and there is a reduction of the bending moment in the lining due to the redistribution of the surrounding soil after the earthquake.展开更多
NLTHA (nonlinear time history analysis) is impractical for widespread used by the professional engineer because it requires long and inefficient computational time involving complexities when six DOF (degree of fre...NLTHA (nonlinear time history analysis) is impractical for widespread used by the professional engineer because it requires long and inefficient computational time involving complexities when six DOF (degree of freedom) per node is applied. The NLTHA nowadays is predicted by MPA (modal pushover analysis). In this method, effects of higher modes on the dynamic response are considered to estimate seismic demands for structures. In this study, the effect of the reduction of number of DOF is analyzed using 3D NLTHA together with MPA of a rigid connection RC bridge under large earthquake motion. The results are compared with the 6 DOF NLTHA in terms of response of the structure and CPU time to obtain the most efficient computational effort. Result of NLTHA showed that the computational time of the structure both for 4 DOF (without two lateral torsional effects) and 3 DOF (without two lateral torsional and vertical displacements) was reduced significantly compared to the structure using 6 DOF. The reduction of computational time was close to fifty percent both for 4 and 3 DOF's. When the maximum responses between NLTHA and MPA are compared, it is found that the differences are insignificant.展开更多
The author proposes to obtain the dynamic stiffness for the multiply-supported structures condensed to the supports in the frequency domain using the modal approach. Thus, previously proposed approach, requiring the d...The author proposes to obtain the dynamic stiffness for the multiply-supported structures condensed to the supports in the frequency domain using the modal approach. Thus, previously proposed approach, requiring the dynamic inertia matrix for the single-base system, is extended for the multiply-supported systems. Modal analysis is performed twice: once for the structural model with one base fixed, then for the same model with all bases fixed. The applicability of the proposed approach is checked for a sample two-base system enabling analytical solutions both in precise and modal approaches. The format of the condensed dynamic stiffness in the frequency domain enables to combine finite-element-method (FEM) codes like ABAQUS and Soil-Structure Interaction (SSI) codes like SASSI or CLASSI in a complex to perform effective soil-structure interaction analysis.展开更多
The expression of the equivalent stiffness of the saturated poro-elastic half space interacting with an infinite beam to harmonic moving loads is obtained via the Fourier transformation method in the frequency wave nu...The expression of the equivalent stiffness of the saturated poro-elastic half space interacting with an infinite beam to harmonic moving loads is obtained via the Fourier transformation method in the frequency wave number domain. Based on the obtained equivalent stiffness, the frequency wave number domain solution of the beam-half-space system is obtained by the compatibility condition between the beam and the half space. Critical velocity of harmonic moving loads along an infinite Euler-Bernoulli elastic beam is determined. The time domain solutions for the beam and the saturated poro-elastic half space are derived by means of the inverse Fourier transformation method. Also, the influences of the load speed, frequency and material parameters of the poro-elastic half space on the responses of the beam are investigated. Numerical results show that the frequency corresponding to the maximum deflection and bending moment increases with increasing load speed. Moreover, it can be seen that at higher frequencies, the dynamic response is independent of the load speed. The present results also show that for a beam overlying a saturated poro-elastic half space, there still exist critical velocities even when the load velocity is larger than the shear wave speed of the medium.展开更多
文摘The dynamic interaction between tunnel lining and its surrounding soil is a complicated issue as the magnitude of seismic wave from bedrock to the structure can be easily influenced by the geometrical layout and structural stiffness of the tunnel.A series of numerical analysis was conducted to study the dynamic response of the tunnel lining of side-by-side and vertically stacked double-tube tunnel since the inertia and kinematic interactions between the tunnel lining and the surrounding soil during an earthquake could induce excessive stresses to the lining itself due to the stiffness variation between the lining and the soil.Real earthquake ground acceleration was used as an input motion in the dynamic analysis.The interactive behavior of bending moment and axial forces,and the displacement of the tunnels were used to evaluate the effect of tunnel geometrical layout on the performance of the lining.It is found that the effect of earthquake on the axial thrust of the lining is insignificant,and there is a reduction of the bending moment in the lining due to the redistribution of the surrounding soil after the earthquake.
文摘NLTHA (nonlinear time history analysis) is impractical for widespread used by the professional engineer because it requires long and inefficient computational time involving complexities when six DOF (degree of freedom) per node is applied. The NLTHA nowadays is predicted by MPA (modal pushover analysis). In this method, effects of higher modes on the dynamic response are considered to estimate seismic demands for structures. In this study, the effect of the reduction of number of DOF is analyzed using 3D NLTHA together with MPA of a rigid connection RC bridge under large earthquake motion. The results are compared with the 6 DOF NLTHA in terms of response of the structure and CPU time to obtain the most efficient computational effort. Result of NLTHA showed that the computational time of the structure both for 4 DOF (without two lateral torsional effects) and 3 DOF (without two lateral torsional and vertical displacements) was reduced significantly compared to the structure using 6 DOF. The reduction of computational time was close to fifty percent both for 4 and 3 DOF's. When the maximum responses between NLTHA and MPA are compared, it is found that the differences are insignificant.
文摘The author proposes to obtain the dynamic stiffness for the multiply-supported structures condensed to the supports in the frequency domain using the modal approach. Thus, previously proposed approach, requiring the dynamic inertia matrix for the single-base system, is extended for the multiply-supported systems. Modal analysis is performed twice: once for the structural model with one base fixed, then for the same model with all bases fixed. The applicability of the proposed approach is checked for a sample two-base system enabling analytical solutions both in precise and modal approaches. The format of the condensed dynamic stiffness in the frequency domain enables to combine finite-element-method (FEM) codes like ABAQUS and Soil-Structure Interaction (SSI) codes like SASSI or CLASSI in a complex to perform effective soil-structure interaction analysis.
基金the National Natural Science Foundatio of China (No. 50679041)the Foundation of Jiangx Educational Committee (No. GJJ09367)
文摘The expression of the equivalent stiffness of the saturated poro-elastic half space interacting with an infinite beam to harmonic moving loads is obtained via the Fourier transformation method in the frequency wave number domain. Based on the obtained equivalent stiffness, the frequency wave number domain solution of the beam-half-space system is obtained by the compatibility condition between the beam and the half space. Critical velocity of harmonic moving loads along an infinite Euler-Bernoulli elastic beam is determined. The time domain solutions for the beam and the saturated poro-elastic half space are derived by means of the inverse Fourier transformation method. Also, the influences of the load speed, frequency and material parameters of the poro-elastic half space on the responses of the beam are investigated. Numerical results show that the frequency corresponding to the maximum deflection and bending moment increases with increasing load speed. Moreover, it can be seen that at higher frequencies, the dynamic response is independent of the load speed. The present results also show that for a beam overlying a saturated poro-elastic half space, there still exist critical velocities even when the load velocity is larger than the shear wave speed of the medium.