The buckling behavior of single layer space structure is very sensitive. The joint rigidity, moreover, is one of the main factors of stability which may determine the entire failure behavior. Thus, the reasonable stif...The buckling behavior of single layer space structure is very sensitive. The joint rigidity, moreover, is one of the main factors of stability which may determine the entire failure behavior. Thus, the reasonable stiffness of joint system, which is neither total pin assumption nor perfect fix condition, is very important to apply to the real single layer space one. Therefore, the purpose of this work was to investigate the buckling behavior of single layer space structure, using the development of the upgraded stiffness matrix for the joint rigidity. To derive tangential stiffness matrix, a displacement function was assumed using translational and rotational displacement at the node. The geometrical nonlinear analysis was simulated not only with perfect model but also with imperfect one. As a result, the one and two free nodal numerical models were investigated using derived stiffness matrix. It was figured out that the buckling load increases in proportion to joint rigidity with rise-span ratio. The stability of numerical model is very sensitive with the initial imperfection, responding of bifurcation in the structure.展开更多
Mooring system plays an important role in station keeping of floating offshore structures. Coupled analysis on mooring-buoy interactions has been increasingly studied in recent years. At present, chains and wire ropes...Mooring system plays an important role in station keeping of floating offshore structures. Coupled analysis on mooring-buoy interactions has been increasingly studied in recent years. At present, chains and wire ropes are widely used in offshore engineering practice. On the basis of mooring line statics, an explicit formulation of single mooring chain/wire rope stiffness coefficients and mooring stiffness matrix of the mooring system were derived in this article, taking into account the horizontal restoring force, vertical restoring force and their coupling terms. The nonlinearity of mooring stiffness was analyzed, and the influences of various parameters, such as material, displacement, pre-tension and water depth, were investigated. Finally some application cases of the mooring stiffness in hydrodynamic calculation were presented. Data shows that this kind of stiffness can reckon in linear and nonlinear forces of mooring system. Also, the stiffness can be used in hydrodynamic analysis to get the eieenfrequencv of slow drift motions.展开更多
Couple of DOF technique in FEM and the algorithm for equation group solution in the whole stiffness matrix is studied in this paper. A new procedure is developed for the analysis of telescope beam structure. This meth...Couple of DOF technique in FEM and the algorithm for equation group solution in the whole stiffness matrix is studied in this paper. A new procedure is developed for the analysis of telescope beam structure. This method can solve most of the complex structural problems in engineering practice. This method has been used in the FEM analysis of pile frame of muhifunetion drilling machine, which is designed and manufactured by our research group. The right analysis result can improves the design efficiency and the reliability of the structure and reduce the design cost.展开更多
In this study, the static stability of the grasp of a single planar object is analyzed using the potential energy method. In previous papers, we considered cases in which individual fingers were replaced by a multidim...In this study, the static stability of the grasp of a single planar object is analyzed using the potential energy method. In previous papers, we considered cases in which individual fingers were replaced by a multidimensional translational spring model, in which each finger is constructed with prismatic joints. Human hands and the most developed mechanical hands are constructed with revolute joints. In this paper, the effects of fingertip rotation and a revolute joint spring model are investigated. A grasp stiffness matrix is analytically derived by considering not only frictional rolling contact but also frictionless sliding contact. The difl'erence between the frictional stiffness matrix and the frictionless one is analytically obtained. The effect of local curvature at contact points is analytically derived. The grasp displacement directions affected by the change in curvature and the contact condition are also obtained. The derived stiffness matrix of the revolute joint model is compared with that of the prismatic joint model, and then the stiffness relation is clarified. The gravity effect of the object is also considered. The effectiveness of our method is demonstrated through numerical examples. The stability is evaluated by the eigenvalues of the grasp stiffness matrix, and the grasp displacement direction is obtained by the corresponding eigenvectors. The effect of joint angle is also discussed.展开更多
The problem of geometric non-linearity simulation for spacial cable system was solved by introducing the truss element based on corotational coordinate (CR) system, cable structure materials and node coordinates and a...The problem of geometric non-linearity simulation for spacial cable system was solved by introducing the truss element based on corotational coordinate (CR) system, cable structure materials and node coordinates and automatic refreshing algorithms for element internal force. And the shape-finding problem for maneuvering profile was solved with the Newton-Raphson based on energy convergence criteria with search function. This has avoided the regular truss element assumption extensively used in traditional methods and catenary elements which have difficulties in practical application because of the complicated formulas. The use of CR formulation has taken into account the stiffness outside the cable plane via a geometric stiffness matrix, realizing the 3D space analysis of a cable bridge and improving the efficiency and precision for the space geometric non-linearity analysis and cable structure, and enabling more precised simulation of geometric form finding and internal force of the large span suspension bridge main cable under construction.展开更多
基金Project(12 High-tech Urban C11) supported by High-tech Urban Development Program of Ministry of Land,Transport and Maritime Affairs,Korea
文摘The buckling behavior of single layer space structure is very sensitive. The joint rigidity, moreover, is one of the main factors of stability which may determine the entire failure behavior. Thus, the reasonable stiffness of joint system, which is neither total pin assumption nor perfect fix condition, is very important to apply to the real single layer space one. Therefore, the purpose of this work was to investigate the buckling behavior of single layer space structure, using the development of the upgraded stiffness matrix for the joint rigidity. To derive tangential stiffness matrix, a displacement function was assumed using translational and rotational displacement at the node. The geometrical nonlinear analysis was simulated not only with perfect model but also with imperfect one. As a result, the one and two free nodal numerical models were investigated using derived stiffness matrix. It was figured out that the buckling load increases in proportion to joint rigidity with rise-span ratio. The stability of numerical model is very sensitive with the initial imperfection, responding of bifurcation in the structure.
基金Supported by the National Natural Science Foundation of China under Grant No.(51079034).
文摘Mooring system plays an important role in station keeping of floating offshore structures. Coupled analysis on mooring-buoy interactions has been increasingly studied in recent years. At present, chains and wire ropes are widely used in offshore engineering practice. On the basis of mooring line statics, an explicit formulation of single mooring chain/wire rope stiffness coefficients and mooring stiffness matrix of the mooring system were derived in this article, taking into account the horizontal restoring force, vertical restoring force and their coupling terms. The nonlinearity of mooring stiffness was analyzed, and the influences of various parameters, such as material, displacement, pre-tension and water depth, were investigated. Finally some application cases of the mooring stiffness in hydrodynamic calculation were presented. Data shows that this kind of stiffness can reckon in linear and nonlinear forces of mooring system. Also, the stiffness can be used in hydrodynamic analysis to get the eieenfrequencv of slow drift motions.
文摘Couple of DOF technique in FEM and the algorithm for equation group solution in the whole stiffness matrix is studied in this paper. A new procedure is developed for the analysis of telescope beam structure. This method can solve most of the complex structural problems in engineering practice. This method has been used in the FEM analysis of pile frame of muhifunetion drilling machine, which is designed and manufactured by our research group. The right analysis result can improves the design efficiency and the reliability of the structure and reduce the design cost.
文摘In this study, the static stability of the grasp of a single planar object is analyzed using the potential energy method. In previous papers, we considered cases in which individual fingers were replaced by a multidimensional translational spring model, in which each finger is constructed with prismatic joints. Human hands and the most developed mechanical hands are constructed with revolute joints. In this paper, the effects of fingertip rotation and a revolute joint spring model are investigated. A grasp stiffness matrix is analytically derived by considering not only frictional rolling contact but also frictionless sliding contact. The difl'erence between the frictional stiffness matrix and the frictionless one is analytically obtained. The effect of local curvature at contact points is analytically derived. The grasp displacement directions affected by the change in curvature and the contact condition are also obtained. The derived stiffness matrix of the revolute joint model is compared with that of the prismatic joint model, and then the stiffness relation is clarified. The gravity effect of the object is also considered. The effectiveness of our method is demonstrated through numerical examples. The stability is evaluated by the eigenvalues of the grasp stiffness matrix, and the grasp displacement direction is obtained by the corresponding eigenvectors. The effect of joint angle is also discussed.
基金National Science and Technology Support Program of China(No.2009BAG15B01)Key Programs for Science and Technology Development of Chinese Transportation Industry(No.2008-353-332-190)
文摘The problem of geometric non-linearity simulation for spacial cable system was solved by introducing the truss element based on corotational coordinate (CR) system, cable structure materials and node coordinates and automatic refreshing algorithms for element internal force. And the shape-finding problem for maneuvering profile was solved with the Newton-Raphson based on energy convergence criteria with search function. This has avoided the regular truss element assumption extensively used in traditional methods and catenary elements which have difficulties in practical application because of the complicated formulas. The use of CR formulation has taken into account the stiffness outside the cable plane via a geometric stiffness matrix, realizing the 3D space analysis of a cable bridge and improving the efficiency and precision for the space geometric non-linearity analysis and cable structure, and enabling more precised simulation of geometric form finding and internal force of the large span suspension bridge main cable under construction.