The active control theory and methods of initial disturbances for rockets and missiles are investigated. The rocket or missile/launcher is simplified as a flexible beam excited by a moving varying velocity rigid body ...The active control theory and methods of initial disturbances for rockets and missiles are investigated. The rocket or missile/launcher is simplified as a flexible beam excited by a moving varying velocity rigid body which has two points in contact with the beam. The control force is applied at the supporting point on the beam. Active control strategies based on optimal control theory are proposed and computer simulation is carried out. Simulation results are consistent with the theoretical results, and show that the active control strategies proposed can accomplish the purpose to control the initial disturbances actively. The results show that active control of initial disturbances for rockets and missiles is feasible for application.展开更多
A real-time animation technique for a kind of non-rigid objects, flexible and thin objects, is proposed, which can update with stability the state of n mass points of the mass-spring (MS) modei with time complexity of...A real-time animation technique for a kind of non-rigid objects, flexible and thin objects, is proposed, which can update with stability the state of n mass points of the mass-spring (MS) modei with time complexity of O (n ). The new implicit numerical integration technique of the authors, which is based on a simple approximation of the linear system, has great advantages over the existing implicit integration methods. Moreover, experiment shows that the new technique is highly efficient in animating a kind of non-rigid objects, and suitable for the draping module of the 3D garment CAD system.展开更多
文摘The active control theory and methods of initial disturbances for rockets and missiles are investigated. The rocket or missile/launcher is simplified as a flexible beam excited by a moving varying velocity rigid body which has two points in contact with the beam. The control force is applied at the supporting point on the beam. Active control strategies based on optimal control theory are proposed and computer simulation is carried out. Simulation results are consistent with the theoretical results, and show that the active control strategies proposed can accomplish the purpose to control the initial disturbances actively. The results show that active control of initial disturbances for rockets and missiles is feasible for application.
文摘A real-time animation technique for a kind of non-rigid objects, flexible and thin objects, is proposed, which can update with stability the state of n mass points of the mass-spring (MS) modei with time complexity of O (n ). The new implicit numerical integration technique of the authors, which is based on a simple approximation of the linear system, has great advantages over the existing implicit integration methods. Moreover, experiment shows that the new technique is highly efficient in animating a kind of non-rigid objects, and suitable for the draping module of the 3D garment CAD system.