NLTHA (nonlinear time history analysis) is impractical for widespread used by the professional engineer because it requires long and inefficient computational time involving complexities when six DOF (degree of fre...NLTHA (nonlinear time history analysis) is impractical for widespread used by the professional engineer because it requires long and inefficient computational time involving complexities when six DOF (degree of freedom) per node is applied. The NLTHA nowadays is predicted by MPA (modal pushover analysis). In this method, effects of higher modes on the dynamic response are considered to estimate seismic demands for structures. In this study, the effect of the reduction of number of DOF is analyzed using 3D NLTHA together with MPA of a rigid connection RC bridge under large earthquake motion. The results are compared with the 6 DOF NLTHA in terms of response of the structure and CPU time to obtain the most efficient computational effort. Result of NLTHA showed that the computational time of the structure both for 4 DOF (without two lateral torsional effects) and 3 DOF (without two lateral torsional and vertical displacements) was reduced significantly compared to the structure using 6 DOF. The reduction of computational time was close to fifty percent both for 4 and 3 DOF's. When the maximum responses between NLTHA and MPA are compared, it is found that the differences are insignificant.展开更多
文摘NLTHA (nonlinear time history analysis) is impractical for widespread used by the professional engineer because it requires long and inefficient computational time involving complexities when six DOF (degree of freedom) per node is applied. The NLTHA nowadays is predicted by MPA (modal pushover analysis). In this method, effects of higher modes on the dynamic response are considered to estimate seismic demands for structures. In this study, the effect of the reduction of number of DOF is analyzed using 3D NLTHA together with MPA of a rigid connection RC bridge under large earthquake motion. The results are compared with the 6 DOF NLTHA in terms of response of the structure and CPU time to obtain the most efficient computational effort. Result of NLTHA showed that the computational time of the structure both for 4 DOF (without two lateral torsional effects) and 3 DOF (without two lateral torsional and vertical displacements) was reduced significantly compared to the structure using 6 DOF. The reduction of computational time was close to fifty percent both for 4 and 3 DOF's. When the maximum responses between NLTHA and MPA are compared, it is found that the differences are insignificant.