A three-dimensional beam element is derived based on the principle of stationary total potential energy for geometrically nonlinear analysis of space frames. A new tangent stiffness matrix, which allows for high order...A three-dimensional beam element is derived based on the principle of stationary total potential energy for geometrically nonlinear analysis of space frames. A new tangent stiffness matrix, which allows for high order effects of element deformations, replaces the conventional incremental secant stiffness matrix. Two deformation stiffness matrices due to the variation of axial force and bending moments are included in the tangent stiffness. They are functions of element deformations and incorporate the coupling among axial, lateral and torsional deformations. A correction matrix is added to the tangent stiffness matrix to make displacement derivatives equivalent to the commutative rotational degrees of freedom. Numerical examples show that the proposed dement is accurate and efficient in predicting the nonlinear behavior, such as axial-torsional and flexural-torsional buckling, of space frames even when fewer elements are used to model a member.展开更多
The seismic behavior of frames with semi rigid connections and rotational dampers is examined.The ground acceleration due to earthquake is regarded as a stochastic process,and a pseudo excitation algorithm in frequen...The seismic behavior of frames with semi rigid connections and rotational dampers is examined.The ground acceleration due to earthquake is regarded as a stochastic process,and a pseudo excitation algorithm in frequency domain is implemented in a computer program to handle non orthogonal damping properties of the system.The computer program which incorporates detailed connection models and rotational damping models is used to investigate the effect of the connection of the semi rigid frame.It is shown from analytical studies that semi rigid frames with rotational dampers improve the seismic response of the building and may provide an effective and reliable earthquake resistant design solution.展开更多
There are many structural lateral systems used in tall buildings: rigid frames, braced frames, shear walls, tubular structures and core structures. The outrigger and belt truss systems are efficient structures for dr...There are many structural lateral systems used in tall buildings: rigid frames, braced frames, shear walls, tubular structures and core structures. The outrigger and belt truss systems are efficient structures for drift control and base moment reduction in tall buildings where the core alone is not rigid enough to resist lateral loads. Perimeter columns are mobilized for increasing the effective width of the structure, and they developed tension in the windward columns and compression in the leeward columns. Optimum locations for the outriggers have been studied because of the influence on the top displacement and base moment in the core. It was analyzed the optimal position for two to seven outriggers and belt trusses, aiming to achieve minimum bending moment and minimum drift.展开更多
The seismic analysis of a rigid-framed prestressed concrete bridge in Tianjin Light Railway is performed. A 3-D dynamic finite element model of the bridge is established considering the weakening effect caused by the ...The seismic analysis of a rigid-framed prestressed concrete bridge in Tianjin Light Railway is performed. A 3-D dynamic finite element model of the bridge is established considering the weakening effect caused by the soft soil foundation. After the dynamic characteristics are calculated in terms of natural frequencies and modes, the seismic analysis is carried out using the modal response spectrum method and the time-history method, respectively. Based on the calculated results, the reasonable design values are finally suggested as the basis of the seismic design of the bridge, and meanwhile the problems encountered were also analyzed. Finally, some conclusions are drawn as: 1) Despite the superiority of rigid-framed prestressed concrete bridge, the upper and lower ends of the piers of the bridge are proved to be the crucial parts of the bridge, which are easily destroyed under designed earthquake excitations and should be carefully analyzed and designed; 2) The soft soil foundation can possibly result in rather weakening of the lateral rigidity of the rigid-framed bridge, and should be paid considerable attention; 3) The modal response spectrum method, combined with time-history method, is suggested for the seismic analysis in engineering design of the rigid-framed prestressed concrete bridge.展开更多
A 9-story concrete-filled steel tubular frame model is used to analyze the response of joints due to sudden column loss. Three different models are developed and compared to study the efficiency and feasibility of sim...A 9-story concrete-filled steel tubular frame model is used to analyze the response of joints due to sudden column loss. Three different models are developed and compared to study the efficiency and feasibility of simulation, which include substructure model, beam element model and solid element model. The comparison results show that the substructure model has a satisfying capability, calculation efficiency and accuracy to predict the concerned joints as well as the overall framework. Based on the substructure model and a kind of semi-rigid connection for concretefilled square hollow section steel column proposed in this paper, the nonlinear dynamic analyses are conducted by the alternate path method. It is found that the removal of the ground inner column brings high-level joint moments and comparatively low-level axial tension forces. The initial stiffness and transmitted ultimate moment of the semi-rigid connection are the main factors that influence the frame behavior, and their lower limit should be guaranteed to resist collapse. Reduced ultimate moment results in drastic displacement and axial force development, which may bring progressive collapse. The higher initial stiffness ensures that the structure has a stronger capacity to resist progressive collapse.展开更多
文摘A three-dimensional beam element is derived based on the principle of stationary total potential energy for geometrically nonlinear analysis of space frames. A new tangent stiffness matrix, which allows for high order effects of element deformations, replaces the conventional incremental secant stiffness matrix. Two deformation stiffness matrices due to the variation of axial force and bending moments are included in the tangent stiffness. They are functions of element deformations and incorporate the coupling among axial, lateral and torsional deformations. A correction matrix is added to the tangent stiffness matrix to make displacement derivatives equivalent to the commutative rotational degrees of freedom. Numerical examples show that the proposed dement is accurate and efficient in predicting the nonlinear behavior, such as axial-torsional and flexural-torsional buckling, of space frames even when fewer elements are used to model a member.
文摘The seismic behavior of frames with semi rigid connections and rotational dampers is examined.The ground acceleration due to earthquake is regarded as a stochastic process,and a pseudo excitation algorithm in frequency domain is implemented in a computer program to handle non orthogonal damping properties of the system.The computer program which incorporates detailed connection models and rotational damping models is used to investigate the effect of the connection of the semi rigid frame.It is shown from analytical studies that semi rigid frames with rotational dampers improve the seismic response of the building and may provide an effective and reliable earthquake resistant design solution.
文摘There are many structural lateral systems used in tall buildings: rigid frames, braced frames, shear walls, tubular structures and core structures. The outrigger and belt truss systems are efficient structures for drift control and base moment reduction in tall buildings where the core alone is not rigid enough to resist lateral loads. Perimeter columns are mobilized for increasing the effective width of the structure, and they developed tension in the windward columns and compression in the leeward columns. Optimum locations for the outriggers have been studied because of the influence on the top displacement and base moment in the core. It was analyzed the optimal position for two to seven outriggers and belt trusses, aiming to achieve minimum bending moment and minimum drift.
文摘The seismic analysis of a rigid-framed prestressed concrete bridge in Tianjin Light Railway is performed. A 3-D dynamic finite element model of the bridge is established considering the weakening effect caused by the soft soil foundation. After the dynamic characteristics are calculated in terms of natural frequencies and modes, the seismic analysis is carried out using the modal response spectrum method and the time-history method, respectively. Based on the calculated results, the reasonable design values are finally suggested as the basis of the seismic design of the bridge, and meanwhile the problems encountered were also analyzed. Finally, some conclusions are drawn as: 1) Despite the superiority of rigid-framed prestressed concrete bridge, the upper and lower ends of the piers of the bridge are proved to be the crucial parts of the bridge, which are easily destroyed under designed earthquake excitations and should be carefully analyzed and designed; 2) The soft soil foundation can possibly result in rather weakening of the lateral rigidity of the rigid-framed bridge, and should be paid considerable attention; 3) The modal response spectrum method, combined with time-history method, is suggested for the seismic analysis in engineering design of the rigid-framed prestressed concrete bridge.
基金Supported by National Natural Science Foundation of China (No.50878066)Natural Science Foundation of Heilongjiang Province (No.ZJG0701)Heilongjiang Postdoctoral Science Foundation
文摘A 9-story concrete-filled steel tubular frame model is used to analyze the response of joints due to sudden column loss. Three different models are developed and compared to study the efficiency and feasibility of simulation, which include substructure model, beam element model and solid element model. The comparison results show that the substructure model has a satisfying capability, calculation efficiency and accuracy to predict the concerned joints as well as the overall framework. Based on the substructure model and a kind of semi-rigid connection for concretefilled square hollow section steel column proposed in this paper, the nonlinear dynamic analyses are conducted by the alternate path method. It is found that the removal of the ground inner column brings high-level joint moments and comparatively low-level axial tension forces. The initial stiffness and transmitted ultimate moment of the semi-rigid connection are the main factors that influence the frame behavior, and their lower limit should be guaranteed to resist collapse. Reduced ultimate moment results in drastic displacement and axial force development, which may bring progressive collapse. The higher initial stiffness ensures that the structure has a stronger capacity to resist progressive collapse.