To ascertain the influence of the boundary friction on mechanical properties of disc-spring vibration isolators a load-displacement hysteresis curve formula of disc-spring vibration isolators is derived on the basis o...To ascertain the influence of the boundary friction on mechanical properties of disc-spring vibration isolators a load-displacement hysteresis curve formula of disc-spring vibration isolators is derived on the basis of the energy conservation law as well as considering the effect of the boundary friction.The formula is validated through the finite element analysis and static load tests.On this basis the effect of the boundary friction on the bearing capacity is researched. Then the dynamic performance of disc-spring vibration isolators is studied by dynamic tests.The experimental results indicate that the boundary friction can promise a larger damping with a ratio of 0.23 for disc-spring vibration isolators.Compared with the loading frequency the loading amplitude has a greater impact on the energy consumption dynamic stiffness and damping of vibration isolators.This research can provide valuable information for the design of disc-spring vibration isolators.展开更多
This paper presents an analytical study on the influence of edge restraining stiffness on the transverse vibrations of rectangular plate structure. An improved Fourier series method was employed to analyze the transve...This paper presents an analytical study on the influence of edge restraining stiffness on the transverse vibrations of rectangular plate structure. An improved Fourier series method was employed to analyze the transverse vibration of plate structure with general elastically restrained boundary conditions. A linear combination of a double Fourier series and eight auxiliary terms was sought as the admissible function of the flexural displacement of the plate, each term being a combination of a polynomial function and a single cosine series expansion. The auxiliary terms were introduced to ensure and improve the smoothness of the original displacement function and its derivatives at the boundaries. Several numerical examples were given to demonstrate the validity and accuracy of the current solution. The influences of translational and rotational stiffness on the natural frequencies and mode shapes of plate were analyzed by numerical results. The results show that the translational stiffness has bigger influence on the natural frequencies than the rotational stiffness. It is generally well known that little change of the rotational stiffness has little influence on the mode shapes of plate. However, the current work shows that a very little change of rotational stiffness value may lead to a large change of the mode shapes of a square plate structure.展开更多
When conducting dynamic tests of underground structure by a rigid container, reasonable boundary conditions are one of the essential factors related to the accuracy of test results, especially the artificial boundary ...When conducting dynamic tests of underground structure by a rigid container, reasonable boundary conditions are one of the essential factors related to the accuracy of test results, especially the artificial boundary perpendicular to the excitation direction. On the basis of numerous studies, shaking table tests with four different typical boundaries are performed in this study. The tests consider the seismic intensity and seismic wave types. Then, the simulation effects of the four boundary conditions are evaluated from four aspects as follows: the differential rate of peak acceleration, acceleration curve, similarity of Fourier frequency spectra, and uneven soil settlement in rigid containers. Results show that the simulation effects of the boundary conditions are not only affected by the nature of the boundary material but also related to the seismic intensity, types of seismic waves, and filter characteristic of the filling medium in containers. In comparison with the other three types of boundary condition, foamed polyethylene shows the best simulation effect and its effect decreases gradually with the increase in earthquake intensity. Finally, on the basis of existing studies, the evaluation criteria of boundary effect, the principle for the selection of boundary material type and the thickness of boundary material are discussed and summarized, and the corresponding design methods and suggestions are then provided.展开更多
As a result of the recently increasing demands on high-performance aero-engine,the machining accuracy of blade profile is becoming more stringent. However,in the current profile,precision milling,grinding or near-nets...As a result of the recently increasing demands on high-performance aero-engine,the machining accuracy of blade profile is becoming more stringent. However,in the current profile,precision milling,grinding or near-netshape technology has to undergo a tedious iterative error compensation. Thus,if the profile error area and boundary can be determined automatically and quickly,it will help to improve the efficiency of subsequent re-machining correction process. To this end,an error boundary intersection approach is presented aiming at the error area determination of complex profile,including the phaseⅠof cross sectional non-rigid registration based on the minimum error area and the phaseⅡof boundary identification based on triangular meshes intersection. Some practical cases are given to demonstrate the effectiveness and superiority of the proposed approach.展开更多
The rigid body limit equilibrium method(RBLEM) and finite element method(FEM) are two widely used approaches for rock slope's stability analysis currently. RBLEM introduced plethoric assumptions; while traditional...The rigid body limit equilibrium method(RBLEM) and finite element method(FEM) are two widely used approaches for rock slope's stability analysis currently. RBLEM introduced plethoric assumptions; while traditional FEM relied on artificial factors when determining factor of safety(FOS) and sliding surfaces. Based on the definition of structure instability that an elasto-plastic structure is not stable if it is unable to satisfy simultaneously equilibrium condition, kinematical admissibility and constitutive equations under given external loads, deformation reinforcement theory(DRT) is developed. With this theory, plastic complementary energy(PCE) can be used to evaluate the overall stability of rock slope, and the unbalanced force beyond the yield surface could be the identification of local failure. Compared with traditional slope stability analysis approaches, the PCE norm curve to strength reduced factor is introduced and the unbalanced force is applied to the determination of key sliding surfaces and required reinforcement. Typical and important issues in rock slope stability are tested in TFINE(a three-dimensional nonlinear finite element program), which is further applied to several representatives of high rock slope's stability evaluation and reinforcement engineering practice in southwest of China.展开更多
Restrained distortional buckling is an important buckling mode of steel-concrete composite box beams(SCCBB)under the hogging moment.Rotational and lateral deformation restraints of the bottom plate by the webs are ess...Restrained distortional buckling is an important buckling mode of steel-concrete composite box beams(SCCBB)under the hogging moment.Rotational and lateral deformation restraints of the bottom plate by the webs are essential factors affecting SCCBB distortional buckling.Based on the stationary potential energy principle,the analytical expressions for the rotational restraint stiffness(RRS)of the web upper edge as well as the RRS and the lateral restraint stiffness(LRS)of the bottom plate were derived.Also,the SCCBB critical moment formula under the hogging moment was derived.Using twenty specimens,the theoretical calculation method is compared with the finite-element method.Results indicate that the theoretical calculation method can effectively and accurately reflect the restraint effect of the studs,top steel flange,and other factors on the bottom plate.Both the RRS and the LRS have a nonlinear coupling relationship with the external loads and the RRS of the web’s upper edge.Under the hogging moment,the RRS of the web upper edge has a certain influence on the SCCBB distortional buckling critical moment.With increasing RRS of the web upper edge,the SCCBB critical moment increases at first and then tends to be stable.展开更多
Traditional rigid body limit equilibrium method (RBLEM) was adopted for the stability evaluation and analysis of rock slope under earthquake scenario. It is not able to provide the real stress distribution of the st...Traditional rigid body limit equilibrium method (RBLEM) was adopted for the stability evaluation and analysis of rock slope under earthquake scenario. It is not able to provide the real stress distribution of the structure, while the strength reduction method relies on the arbitrary decision on the failure criteria. The dynamic limit equilibrium solution was proposed for the stability analysis of sliding block based on 3-D multi-grid method, by incorporating implicit stepping integration FEM. There are two independent meshes created in the analysis: One original 3-D FEM mesh is for the simulation of target structure and provides the stress time-history, while the other surface grid is for the simulation of sliding surface and could be selected and designed freely. As long as the stress time-history of the geotechnical structure under earthquake scenario is obtained based on 3-D nonlinear dynamic FEM analysis, the time-history of the force on sliding surface could be derived by projecting the stress time-history from 3-D FEM mesh to surface grid. After that, the safety factor time-history of the sliding block will be determined through applying limit equilibrium method. With those information in place, the structure's aseismatic stability ean be further studied. The above theory and method were also applied to the aseismatic stability analysis of Dagangshan arch dam's right bank high slope and compared with the the result generated by Quasi-static method. The comparative analysis reveals that the method not only raises the FEM's capability in accurate simulation of complicated geologic structure, but also increases the flexibility and comprehensiveness of limit equilibrium method. This method is reliable and recommended for further application in other real geotechnical engineering.展开更多
This paper is concerned with the stability analysis of reinforced slopes.A new approach based on the limit equilibrium principle is proposed to evaluate the stability of the reinforced slopes.The effect of reinforceme...This paper is concerned with the stability analysis of reinforced slopes.A new approach based on the limit equilibrium principle is proposed to evaluate the stability of the reinforced slopes.The effect of reinforcement is modeled as an equivalent restoring force acting the bottom of the slice and added into the general limit equilibrium(GLE) method.The equations of force and moment equilibrium of the slice are derived and corresponding iterative solution methods are provided.The new method can satisfy both the force and the moment equilibrium and be applicable to the critical failure surface of arbitrary form.Furthermore,the results predicted by the proposed method are compared with the calculation examples of other researchers and the centrifuge model test results to validate its correctness and effectiveness.展开更多
A numerical model was developed by using the dual boundary element method to investigate the dynamic behavior of a moored floating structure with a pair of vertical and flexible skirts attached at its bottom in the li...A numerical model was developed by using the dual boundary element method to investigate the dynamic behavior of a moored floating structure with a pair of vertical and flexible skirts attached at its bottom in the linear wave field. Theoretical conception is based on potential theory with linear external forces. The motions of the structure were assumed to be small and linear. The flexible skirts mounted beneath the structure were assumed uniform flexural rigidity and the thickness of the skirts was negligible. Comparison between the present model and Gesraha's solution was made to verify the results for a moored floating structure with or without rigid skirts. The influence of the skirt rigidity on the moored floating structure, moored lines and waves is investigated in this study. The results show that, the natural frequencies of structure's oscillation, moored force, wave reflection and transmission tend to the region of short-period waves when the flexible rigidity gradually decreases. Positive correlation exists between the aft mooring force and the pitch motion of the floating structure.展开更多
Problems of fluid structure interactions are governed by a set of fundamental parameters. This work aims at showing through simple examples the changes in natural vibration frequencies and mode shapes for wall-cavity ...Problems of fluid structure interactions are governed by a set of fundamental parameters. This work aims at showing through simple examples the changes in natural vibration frequencies and mode shapes for wall-cavity systems when the structural rigidity is modified. Numerical results are constructed using ANSYS software with triangular finite elements for both the fluid (2D acoustic elements) and the solid (plane stress) domains. These former results are compared to proposed analytical expressions, showing an alternative benchmark tool for the analyst. Very rigid wall structures imply in frequencies and mode shapes almost identical to those achieved for an acoustic cavity with Neumann boundary condition at the interface. In this case, the wall behaves as rigid and fluid-structure system mode shapes are similar to those achieved for the uncoupled reservoir case.展开更多
We give the sharp estimates for the degree of symmetry and the semi-simple degree of symmetry of certain compact fiber bundles with non-trivial four dimensional fibers in the sense of cobordism, by virtue of the rigid...We give the sharp estimates for the degree of symmetry and the semi-simple degree of symmetry of certain compact fiber bundles with non-trivial four dimensional fibers in the sense of cobordism, by virtue of the rigidity theorem of harmonic maps due to Schoen and Yau (Topology, 18, 1979, 361-380). As a corollary of this estimate, we compute the degree of symmetry and the semi-simple degree of symmetry of CP2×V, where V is a closed smooth manifold admitting a real analytic Riemannian metric of non-positive curvature. In addition, by the Albanese map, we obtain the sharp estimate of the degree of symmetry of a compact smooth manifold with some restrictions on its one dimensional cohomology.展开更多
The dynamics of the laser-induced bubble at different ambient pressures was numerically studied by Finite Volume Method (FVM). The velocity of the bubble wall, the liquid jet velocity at collapse, and the pressure of ...The dynamics of the laser-induced bubble at different ambient pressures was numerically studied by Finite Volume Method (FVM). The velocity of the bubble wall, the liquid jet velocity at collapse, and the pressure of the water hammer while the liquid jet impacting onto the boundary are found to increase nonlinearly with increasing ambient pressure. The collapse time and the formation time of the liquid jet are found to decrease nonlinearly with increasing ambient pressure. The ratios of the jet formation time to the collapse time, and the displacement of the bubble center to the maximal radius while the jet formation stay invariant when ambient pressure changes. These ratios are independent of ambient pressure.展开更多
Water in the mantle transition zone and the core-mantle boundary plays a key role in Earth’s stratification,volatile cycling,and core formation.If water transportation is actively running between the aforementioned l...Water in the mantle transition zone and the core-mantle boundary plays a key role in Earth’s stratification,volatile cycling,and core formation.If water transportation is actively running between the aforementioned layers,the lower mantle should contain water channels with distinctive seismic and/or electromagnetic signatures.Here,we investigated the electrical conductivity and sound velocity ofε-FeOOH up to 71 GPa and 1800 K and compared them with global tomography data.An abrupt threeorder jump of electrical conductivity was observed above 50 GPa,reaching 1.24(12)×10^(3)S/m at 61 GPa.Meanwhile,the longitudinal sound velocity dropped by 16.8%in response to the high-to-low spin transition of Fe^(3+).The high-conductivity and low-sound velocity ofε-FeOOH match the features of heterogenous scatterers in the mid-lower mantle.Such unique properties of hydrousε-FeOOH,or possibly other Fe-enriched phases can be detected as evidence of active water transportation in the mid-lower mantle.展开更多
基金Transformation Program of Science and Technology Achievements of Jiangsu Province(No.BA2008030)
文摘To ascertain the influence of the boundary friction on mechanical properties of disc-spring vibration isolators a load-displacement hysteresis curve formula of disc-spring vibration isolators is derived on the basis of the energy conservation law as well as considering the effect of the boundary friction.The formula is validated through the finite element analysis and static load tests.On this basis the effect of the boundary friction on the bearing capacity is researched. Then the dynamic performance of disc-spring vibration isolators is studied by dynamic tests.The experimental results indicate that the boundary friction can promise a larger damping with a ratio of 0.23 for disc-spring vibration isolators.Compared with the loading frequency the loading amplitude has a greater impact on the energy consumption dynamic stiffness and damping of vibration isolators.This research can provide valuable information for the design of disc-spring vibration isolators.
基金the National Natural Science Foundation of China (No.10802024)Research Fund for the Doctoral Program of Higher Education of China (No.200802171009)+2 种基金Natural Science Foundation of Heilongjiang Province (No.E200944)Innovative Talents Fund of Harbin (No.2009RFQXG211)Fundamental Research Fund of HEU (No. HEUFT08003)
文摘This paper presents an analytical study on the influence of edge restraining stiffness on the transverse vibrations of rectangular plate structure. An improved Fourier series method was employed to analyze the transverse vibration of plate structure with general elastically restrained boundary conditions. A linear combination of a double Fourier series and eight auxiliary terms was sought as the admissible function of the flexural displacement of the plate, each term being a combination of a polynomial function and a single cosine series expansion. The auxiliary terms were introduced to ensure and improve the smoothness of the original displacement function and its derivatives at the boundaries. Several numerical examples were given to demonstrate the validity and accuracy of the current solution. The influences of translational and rotational stiffness on the natural frequencies and mode shapes of plate were analyzed by numerical results. The results show that the translational stiffness has bigger influence on the natural frequencies than the rotational stiffness. It is generally well known that little change of the rotational stiffness has little influence on the mode shapes of plate. However, the current work shows that a very little change of rotational stiffness value may lead to a large change of the mode shapes of a square plate structure.
基金Projects(51978669,U1734208)supported by the National Natural Science Foundation of ChinaProject(2018JJ3657)supported by the Natural Science Foundation of Hunan Province,China
文摘When conducting dynamic tests of underground structure by a rigid container, reasonable boundary conditions are one of the essential factors related to the accuracy of test results, especially the artificial boundary perpendicular to the excitation direction. On the basis of numerous studies, shaking table tests with four different typical boundaries are performed in this study. The tests consider the seismic intensity and seismic wave types. Then, the simulation effects of the four boundary conditions are evaluated from four aspects as follows: the differential rate of peak acceleration, acceleration curve, similarity of Fourier frequency spectra, and uneven soil settlement in rigid containers. Results show that the simulation effects of the boundary conditions are not only affected by the nature of the boundary material but also related to the seismic intensity, types of seismic waves, and filter characteristic of the filling medium in containers. In comparison with the other three types of boundary condition, foamed polyethylene shows the best simulation effect and its effect decreases gradually with the increase in earthquake intensity. Finally, on the basis of existing studies, the evaluation criteria of boundary effect, the principle for the selection of boundary material type and the thickness of boundary material are discussed and summarized, and the corresponding design methods and suggestions are then provided.
基金supported by the Aeronautical Science Foundation of China (No.20200016112001)。
文摘As a result of the recently increasing demands on high-performance aero-engine,the machining accuracy of blade profile is becoming more stringent. However,in the current profile,precision milling,grinding or near-netshape technology has to undergo a tedious iterative error compensation. Thus,if the profile error area and boundary can be determined automatically and quickly,it will help to improve the efficiency of subsequent re-machining correction process. To this end,an error boundary intersection approach is presented aiming at the error area determination of complex profile,including the phaseⅠof cross sectional non-rigid registration based on the minimum error area and the phaseⅡof boundary identification based on triangular meshes intersection. Some practical cases are given to demonstrate the effectiveness and superiority of the proposed approach.
基金Project(51479097)supported by the National Natural Science Foundation of ChinaProject(2013-KY-2)supported by State Key Laboratory of Hydroscience and Hydraulic Engineering,China
文摘The rigid body limit equilibrium method(RBLEM) and finite element method(FEM) are two widely used approaches for rock slope's stability analysis currently. RBLEM introduced plethoric assumptions; while traditional FEM relied on artificial factors when determining factor of safety(FOS) and sliding surfaces. Based on the definition of structure instability that an elasto-plastic structure is not stable if it is unable to satisfy simultaneously equilibrium condition, kinematical admissibility and constitutive equations under given external loads, deformation reinforcement theory(DRT) is developed. With this theory, plastic complementary energy(PCE) can be used to evaluate the overall stability of rock slope, and the unbalanced force beyond the yield surface could be the identification of local failure. Compared with traditional slope stability analysis approaches, the PCE norm curve to strength reduced factor is introduced and the unbalanced force is applied to the determination of key sliding surfaces and required reinforcement. Typical and important issues in rock slope stability are tested in TFINE(a three-dimensional nonlinear finite element program), which is further applied to several representatives of high rock slope's stability evaluation and reinforcement engineering practice in southwest of China.
基金Projects(U1934207,52078487,51778630) supported by the National Natural Science Foundations of ChinaProject(502501006) supported by the Fundamental Research Funds for the Central Universities,ChinaProject(2019RS3009) supported by the Hunan Innovative Provincial Construction Project,China。
文摘Restrained distortional buckling is an important buckling mode of steel-concrete composite box beams(SCCBB)under the hogging moment.Rotational and lateral deformation restraints of the bottom plate by the webs are essential factors affecting SCCBB distortional buckling.Based on the stationary potential energy principle,the analytical expressions for the rotational restraint stiffness(RRS)of the web upper edge as well as the RRS and the lateral restraint stiffness(LRS)of the bottom plate were derived.Also,the SCCBB critical moment formula under the hogging moment was derived.Using twenty specimens,the theoretical calculation method is compared with the finite-element method.Results indicate that the theoretical calculation method can effectively and accurately reflect the restraint effect of the studs,top steel flange,and other factors on the bottom plate.Both the RRS and the LRS have a nonlinear coupling relationship with the external loads and the RRS of the web’s upper edge.Under the hogging moment,the RRS of the web upper edge has a certain influence on the SCCBB distortional buckling critical moment.With increasing RRS of the web upper edge,the SCCBB critical moment increases at first and then tends to be stable.
基金Project(2013-KY-2) supported by the State Key Laboratory of Hydroscience and Engineering of Hydroscience, ChinaProject(50925931)supported by the National Funds for Distinguished Young Scientists, China
文摘Traditional rigid body limit equilibrium method (RBLEM) was adopted for the stability evaluation and analysis of rock slope under earthquake scenario. It is not able to provide the real stress distribution of the structure, while the strength reduction method relies on the arbitrary decision on the failure criteria. The dynamic limit equilibrium solution was proposed for the stability analysis of sliding block based on 3-D multi-grid method, by incorporating implicit stepping integration FEM. There are two independent meshes created in the analysis: One original 3-D FEM mesh is for the simulation of target structure and provides the stress time-history, while the other surface grid is for the simulation of sliding surface and could be selected and designed freely. As long as the stress time-history of the geotechnical structure under earthquake scenario is obtained based on 3-D nonlinear dynamic FEM analysis, the time-history of the force on sliding surface could be derived by projecting the stress time-history from 3-D FEM mesh to surface grid. After that, the safety factor time-history of the sliding block will be determined through applying limit equilibrium method. With those information in place, the structure's aseismatic stability ean be further studied. The above theory and method were also applied to the aseismatic stability analysis of Dagangshan arch dam's right bank high slope and compared with the the result generated by Quasi-static method. The comparative analysis reveals that the method not only raises the FEM's capability in accurate simulation of complicated geologic structure, but also increases the flexibility and comprehensiveness of limit equilibrium method. This method is reliable and recommended for further application in other real geotechnical engineering.
基金funded by the Key Industrial Science and Technology Project of Shaanxi Province(No.2015GY149)the Scientific Project funded by the Ministry of Housing and Urban-Rural Development of the People’s Republic of China Council(No.2015-K2-008)
文摘This paper is concerned with the stability analysis of reinforced slopes.A new approach based on the limit equilibrium principle is proposed to evaluate the stability of the reinforced slopes.The effect of reinforcement is modeled as an equivalent restoring force acting the bottom of the slice and added into the general limit equilibrium(GLE) method.The equations of force and moment equilibrium of the slice are derived and corresponding iterative solution methods are provided.The new method can satisfy both the force and the moment equilibrium and be applicable to the critical failure surface of arbitrary form.Furthermore,the results predicted by the proposed method are compared with the calculation examples of other researchers and the centrifuge model test results to validate its correctness and effectiveness.
文摘A numerical model was developed by using the dual boundary element method to investigate the dynamic behavior of a moored floating structure with a pair of vertical and flexible skirts attached at its bottom in the linear wave field. Theoretical conception is based on potential theory with linear external forces. The motions of the structure were assumed to be small and linear. The flexible skirts mounted beneath the structure were assumed uniform flexural rigidity and the thickness of the skirts was negligible. Comparison between the present model and Gesraha's solution was made to verify the results for a moored floating structure with or without rigid skirts. The influence of the skirt rigidity on the moored floating structure, moored lines and waves is investigated in this study. The results show that, the natural frequencies of structure's oscillation, moored force, wave reflection and transmission tend to the region of short-period waves when the flexible rigidity gradually decreases. Positive correlation exists between the aft mooring force and the pitch motion of the floating structure.
文摘Problems of fluid structure interactions are governed by a set of fundamental parameters. This work aims at showing through simple examples the changes in natural vibration frequencies and mode shapes for wall-cavity systems when the structural rigidity is modified. Numerical results are constructed using ANSYS software with triangular finite elements for both the fluid (2D acoustic elements) and the solid (plane stress) domains. These former results are compared to proposed analytical expressions, showing an alternative benchmark tool for the analyst. Very rigid wall structures imply in frequencies and mode shapes almost identical to those achieved for an acoustic cavity with Neumann boundary condition at the interface. In this case, the wall behaves as rigid and fluid-structure system mode shapes are similar to those achieved for the uncoupled reservoir case.
基金Project supported by the Japanese Government Scholarshipthe Japan Society for the Promotion of Science Postdoctoral Fellowship for Foreign Researchers+2 种基金the Focused Research Group Postdoctoral Fellowshipthe Program of Visiting Scholars at Chern Institute of Mathematicsthe National Natural Science Foundation of China (No. 10601053).
文摘We give the sharp estimates for the degree of symmetry and the semi-simple degree of symmetry of certain compact fiber bundles with non-trivial four dimensional fibers in the sense of cobordism, by virtue of the rigidity theorem of harmonic maps due to Schoen and Yau (Topology, 18, 1979, 361-380). As a corollary of this estimate, we compute the degree of symmetry and the semi-simple degree of symmetry of CP2×V, where V is a closed smooth manifold admitting a real analytic Riemannian metric of non-positive curvature. In addition, by the Albanese map, we obtain the sharp estimate of the degree of symmetry of a compact smooth manifold with some restrictions on its one dimensional cohomology.
基金supported by the Nanjing University of Science & Technology Research Funding (Grant No. 2010ZDJH09)
文摘The dynamics of the laser-induced bubble at different ambient pressures was numerically studied by Finite Volume Method (FVM). The velocity of the bubble wall, the liquid jet velocity at collapse, and the pressure of the water hammer while the liquid jet impacting onto the boundary are found to increase nonlinearly with increasing ambient pressure. The collapse time and the formation time of the liquid jet are found to decrease nonlinearly with increasing ambient pressure. The ratios of the jet formation time to the collapse time, and the displacement of the bubble center to the maximal radius while the jet formation stay invariant when ambient pressure changes. These ratios are independent of ambient pressure.
基金supported by the Research Start-up Funds of Talents of Sichuan University (1082204112667)China Postdoctoral Science Foundation (18NZ021-0213216308)+6 种基金supported by Spanish Mineco Project (FIS2017-83295-P)supported by the Strategic Priority Research Program of Chinese Academy of Sciences (XDB41000000)supported by the China Academy of Engineering Physics Research Project (CX20210048)a Tencent Xplorer Prizepartially supported by the National Natural Science Foundation of China (42074098)the United Laboratory of High-pressure Physics and Earthquake Science (HPPES202001)the China Academy of Engineering Physics Joint Fund (U1530402)
文摘Water in the mantle transition zone and the core-mantle boundary plays a key role in Earth’s stratification,volatile cycling,and core formation.If water transportation is actively running between the aforementioned layers,the lower mantle should contain water channels with distinctive seismic and/or electromagnetic signatures.Here,we investigated the electrical conductivity and sound velocity ofε-FeOOH up to 71 GPa and 1800 K and compared them with global tomography data.An abrupt threeorder jump of electrical conductivity was observed above 50 GPa,reaching 1.24(12)×10^(3)S/m at 61 GPa.Meanwhile,the longitudinal sound velocity dropped by 16.8%in response to the high-to-low spin transition of Fe^(3+).The high-conductivity and low-sound velocity ofε-FeOOH match the features of heterogenous scatterers in the mid-lower mantle.Such unique properties of hydrousε-FeOOH,or possibly other Fe-enriched phases can be detected as evidence of active water transportation in the mid-lower mantle.