The effects of adipose-derived mesenchymal stem cell (ADMSC) transplantation for the repair of traumatic brain injury remain poorly understood. The present study observed neurological functional changes in a rat model...The effects of adipose-derived mesenchymal stem cell (ADMSC) transplantation for the repair of traumatic brain injury remain poorly understood. The present study observed neurological functional changes in a rat model of traumatic brain injury following ADMSC transplantation via the tail vein. Cell transplants were observed in injured cerebral cortex, and expression of brain-derived nerve growth factor was significantly increased in the injured hippocampus following transplantation. Results demonstrated that transvenous ADMSC transplants migrated to the injured cerebral cortex and significantly improved cognitive function.展开更多
To investigate the changes of immune functions and the effects of Astragalus polysaccharide (ASP) on the cell-mediated immunity of the traumatic stress model of mouse by amputation, 50 mice were randomly divided into ...To investigate the changes of immune functions and the effects of Astragalus polysaccharide (ASP) on the cell-mediated immunity of the traumatic stress model of mouse by amputation, 50 mice were randomly divided into 5 groups for study, in which the group A and B served as the normal control (by injecton of 0.5 ml of saline intra-peritoneally daily), and as the stress control (by intra-peritoneal injecton of 0.5 ml of normal saline into mice after amputation) respectively, to the group C, D and E of mice, 1000 mg/kg (high dose), 300 mg/kg (median dose) and 250 mg/kg (low dose). The CD4 + and CD8 + T cells as well as the expression of the c-fos protein were determined by immunohistochemical techniques, and the expressions of NF-κB mRNA and IL-10 mRNA were assayed by hybridization in situ . The experimental results showed that in comparison with the normal control group of mice (group A), the expression levels of NF-κB mRNA, IL-10 mRNA and the c-fos protein in the tissues of thymus and spleen in the stress controls were significantly elevated and the CD4 + T cells and CD4/CD8 ratio were decreased. However, in comparison with the stress control of mice (group B), the expressions of NF-κB mRNA and IL-10 mRNA were inhibited by ASP, and the CD4 + T cells and CD4/CD8 ratio were increased in groups C, D and E, but the level of c-fos protein was decreased. There was no significant difference in these parameters among group C, D and E. It is concluded that the functions of cell-mediated immunity of mice were disturbed under the stress condition of the traumatic injuries after amputation. And the immune functions can be effectively restored by the use of Astragalus polysaccharide.展开更多
OBJECTIVE: To investigate whether the decrease in expression of interleukin-2 (IL-2) after trauma is associated with changes in DNA binding activity of nuclear factor of activated T cells (NFAT) and activator protein-...OBJECTIVE: To investigate whether the decrease in expression of interleukin-2 (IL-2) after trauma is associated with changes in DNA binding activity of nuclear factor of activated T cells (NFAT) and activator protein-1 (AP-1). METHODS: Mice with closed impact injury with fracture in both hind limbs were adopted as the trauma model. Spleen lymphocytes were isolated from traumatized mice and stimulated with Con-A. Culture supernatants were assayed for IL-2 activity, and total RNA was extracted from spleen lymphocytes and assayed for IL-2 mRNA. DNA binding activity of NFAT and AP-1 were measured by electrophoretic mobility shift assay (EMSA). The expression of c-Fos, c-Jun and JunB proteins was determined by the Western blot analysis. RESULTS: DNA binding activity of NFAT and AP-1 gradually decreased to a minimum of 41% and 49%, respectively, of the control on the 4th day after injury, which was closely followed by the decline in IL-2 activity and IL-2 mRNA. A decrease in the expression of c-Fos on the 1st and 4th day after trauma had no significant effect on c-Jun expression; the increase in expression of JunB was only on the 1st day after injury. CONCLUSION: Decreased IL-2 expression is, at least in part, due to a decline in the activation of NFAT and AP-1 in traumatized mice. The decline in DNA binding activity of NFAT and AP-1 is partly due to a trauma-induced block in the expression of c-Fos.展开更多
基金the National Basic Research Program of China(973Program),No.2007CB512705the General Program for Youths of the National Natural Science Foundation of China,No.30801464
文摘The effects of adipose-derived mesenchymal stem cell (ADMSC) transplantation for the repair of traumatic brain injury remain poorly understood. The present study observed neurological functional changes in a rat model of traumatic brain injury following ADMSC transplantation via the tail vein. Cell transplants were observed in injured cerebral cortex, and expression of brain-derived nerve growth factor was significantly increased in the injured hippocampus following transplantation. Results demonstrated that transvenous ADMSC transplants migrated to the injured cerebral cortex and significantly improved cognitive function.
文摘To investigate the changes of immune functions and the effects of Astragalus polysaccharide (ASP) on the cell-mediated immunity of the traumatic stress model of mouse by amputation, 50 mice were randomly divided into 5 groups for study, in which the group A and B served as the normal control (by injecton of 0.5 ml of saline intra-peritoneally daily), and as the stress control (by intra-peritoneal injecton of 0.5 ml of normal saline into mice after amputation) respectively, to the group C, D and E of mice, 1000 mg/kg (high dose), 300 mg/kg (median dose) and 250 mg/kg (low dose). The CD4 + and CD8 + T cells as well as the expression of the c-fos protein were determined by immunohistochemical techniques, and the expressions of NF-κB mRNA and IL-10 mRNA were assayed by hybridization in situ . The experimental results showed that in comparison with the normal control group of mice (group A), the expression levels of NF-κB mRNA, IL-10 mRNA and the c-fos protein in the tissues of thymus and spleen in the stress controls were significantly elevated and the CD4 + T cells and CD4/CD8 ratio were decreased. However, in comparison with the stress control of mice (group B), the expressions of NF-κB mRNA and IL-10 mRNA were inhibited by ASP, and the CD4 + T cells and CD4/CD8 ratio were increased in groups C, D and E, but the level of c-fos protein was decreased. There was no significant difference in these parameters among group C, D and E. It is concluded that the functions of cell-mediated immunity of mice were disturbed under the stress condition of the traumatic injuries after amputation. And the immune functions can be effectively restored by the use of Astragalus polysaccharide.
文摘OBJECTIVE: To investigate whether the decrease in expression of interleukin-2 (IL-2) after trauma is associated with changes in DNA binding activity of nuclear factor of activated T cells (NFAT) and activator protein-1 (AP-1). METHODS: Mice with closed impact injury with fracture in both hind limbs were adopted as the trauma model. Spleen lymphocytes were isolated from traumatized mice and stimulated with Con-A. Culture supernatants were assayed for IL-2 activity, and total RNA was extracted from spleen lymphocytes and assayed for IL-2 mRNA. DNA binding activity of NFAT and AP-1 were measured by electrophoretic mobility shift assay (EMSA). The expression of c-Fos, c-Jun and JunB proteins was determined by the Western blot analysis. RESULTS: DNA binding activity of NFAT and AP-1 gradually decreased to a minimum of 41% and 49%, respectively, of the control on the 4th day after injury, which was closely followed by the decline in IL-2 activity and IL-2 mRNA. A decrease in the expression of c-Fos on the 1st and 4th day after trauma had no significant effect on c-Jun expression; the increase in expression of JunB was only on the 1st day after injury. CONCLUSION: Decreased IL-2 expression is, at least in part, due to a decline in the activation of NFAT and AP-1 in traumatized mice. The decline in DNA binding activity of NFAT and AP-1 is partly due to a trauma-induced block in the expression of c-Fos.