[Objective]The aim was to analyze the primary speciation of 6 microelements in Glycyrrhiza uralensis Fisch. and provide theoretical basis for explaining pharmacodynamic principle of liquorice and discussing quality co...[Objective]The aim was to analyze the primary speciation of 6 microelements in Glycyrrhiza uralensis Fisch. and provide theoretical basis for explaining pharmacodynamic principle of liquorice and discussing quality control of liquorice planting. [Method]The 6 elements Cu,Zn,Ca,Fe,Mg and Mn in roots of G.uralensis were extracted based on traditional decoction method and were separated into water-soluble state and suspension state by micro porous filtering film. The elements in water-soluble state were detected by flame atomic adsorption spectrophotometry (FAAS). [Result]The results showed that extractive rates of the elements were in the range of 1.71%-60.06%,and immerse-residue ratio in 0.018 3-1.682 0; the results also indicated that the immerse-residue ratio of Zn was biggest (1.68),Zn played an important medical role and might be considered as the best characteristic element in G.uralensis; the recoveries of the elements were ranged from 95.72% to 103.15% and relative standard deviations (RSD) were less than 2.38%. [Conclusion]Because of its high accuracy,FAAS method is feasible for analyzing primary speciation of microelements in G.uralensis.展开更多
Analysis and comparison of Jiaozhou Bay data collected from May 1991 to February 1994(12 seasonal investigations) provided by the Ecological Station of Jiaozhou Bay revealed the characteristic spatiotemporal variation...Analysis and comparison of Jiaozhou Bay data collected from May 1991 to February 1994(12 seasonal investigations) provided by the Ecological Station of Jiaozhou Bay revealed the characteristic spatiotemporal variation of the ambient concentration Si:DIN and Si:16P ratios and the seasonal variation of Jiaozhou Bay Si:DIN and Si:16P ratios showing that the Si:DIN ratios were < 1 throughout the year in Jiaozhou Bay; and that the Si:16P ratios were < 1 throughout Jiaozhou Bay in spring, autumn and winter. The results proved that silicate limited phytoplankton growth in spring, autumn and winter in Jiaozhou Bay. Analysis of the Si:DIN and Si:P ratios showed that the nutrient Si has been limiting the growth of phytoplankton throughout the year in some Jiaozhou Bay waters; and that the silicate deficiency changed the phytoplankton assemblage structure. Analysis of discontinuous 1962 to 1998 nutrient data showed that there was no N or P limitation of phytoplankton growth in that period. The authors consider that the annual cyclic change of silicate limits phytoplankton growth in spring, autumn and winter every year in Jiaozhou Bay; and that in many Jiaozhou Bay waters where the phytoplankton as the predominant species need a great amount of silicate, analysis of the nutrients N or P limitation of phytoplankton growth relying only on the N and P nutrients and DIN:P ratio could yield inaccurate conclusions. The results obtained by applying the rules of absolute and relative limitation fully support this view. The authors consider that the main function of nutrient silicon is to regulate and control the mechanism of the phytoplankton growth process in the ecological system in estuaries, bays and the sea. The authors consider that according to the evolution theory of Darwin, continuous environmental pressure gradually changes the phytoplankton assemblage's structure and the physiology of diatoms. Diatoms requiring a great deal of silicon either constantly decrease or reduce their requirement for silicon. This will cause a series of huge changes in the ecosystem so that the whole ecosystem requires continuous renewal, change and balancing. Human beings have to reduce marine pollution and enhance the capacity of continental sources to transport silicon to sustain the continuity and stability in the marine ecosystem.nt展开更多
AIM: To evaluate the expression of fragile histidine triad (FHIT) gene protein, product of a candidate tumor suppressor, and to investigate the relationship between FHIT, cell apoptosis and proliferation, and patholog...AIM: To evaluate the expression of fragile histidine triad (FHIT) gene protein, product of a candidate tumor suppressor, and to investigate the relationship between FHIT, cell apoptosis and proliferation, and pathological features of primary hepatocellular carcinoma (HCC). METHODS: Forty-seven HCC and ten normal liver specimens were collected during surgical operation between 2001 and 2003. FHIT and proliferating cell nuclear antigen (PCNA) expression were detected by immunohistochemistry, and apoptotic level was evaluated by terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) assay on the tissue sections. RESULTS: All normal liver tissues showed a strong expression of FHIT, whereas 28 of 47 (59.6%) carcinomas showed a significant loss or absence of FHIT expression (P= 0.001). The proportion of reduced FHIT expression in those carcinomas at stages Ⅲ-Ⅳ (70.6%) and in those with extrahepatic metastasis (86.7%) showed an increasing trend compared with those at stages HI (30.8%, P= 0.013) and those without metastasis (46.9%, P = 0.010) respectively. Apoptotic incidence in advanced TNM stage carcinoma and those with positive FHIT expression was higher than that in early stage carcinoma (P=0.030) and in those with negative FHIT expression (P=0.044) respectively. The proliferating potential of hepatocellular carcinoma was associated with FHIT expression (P= 0.016) and the aggressive feature (P = 0.019). Kaplan-Meier analysis demonstrated that the survival time of these 47 patients correlated with TNM stage, FHIT expression and metastasis. CONCLUSION: There is marked loss or absence of FHIT expression, as well as abnormal apoptosis-prdiferation balance in HCC. FHIT may play an important role in carcinogenesis and development of HCC.展开更多
The eutrophication, hypoxia and coastal acidification are attracting more and more attention. In this study, inorganic carbon parameters, including dissolved inorganic carbon (DIC), total alkalinity (TA) and calcu...The eutrophication, hypoxia and coastal acidification are attracting more and more attention. In this study, inorganic carbon parameters, including dissolved inorganic carbon (DIC), total alkalinity (TA) and calculated partial pressure of CO2 (pCO2), obtained from a summer cruise in August, 2009, were used to investigate their integrated response to biological processes accompanying the oxygen depletion in the areas off the Changjiang Estuary. According to the observations, the typical hypoxia occurred in the bottom water just outside the Changjiang Estuary with Dissolved Oxygen (DO) lower than 2.00 mg L^-1. The biological uptake in the surface water and the decomposition of organic matter in the bottom water were fully coupled with each other. The high concentration of Chl_a (Chl_a = 10.9μgL^-1) and DO (9.25 mgL^-1), profoundly decreased DIC concentration 0828 μmolkg^-1) and elevated pH (8.42) was observed in the surface water. The correspondingly increased DIC and depletion of oxygen were observed in the bottom water. The semi-quantitative analysis proved that the locally-produced phytoplankton, determined by primary productivity, was deposited to the bottom and contributed about 76% of total amount of the organic carbon decomposition in the bottom. However, in the bottom hypoxia (DO = 2.05 mgL^-1) area observed in the Southern Zhejiang coastal water, the responding patterns of inorganic carbon parameters deviated from the previous one. The expanding of Changjiang Diluted Water (CDW), the adding of Hangzhou Bay water (with high DIC concentration) and Coastal Current together modify the DIC background value in this area, and the local degeneration and upwelling process may also help to offset the local DIC removed by net biological uptake in surface water. In addition when the mixing occurring in autumn, which may break the summer stratification, the excess release of high DIC in the bottom water to the subsurface water could have an important influence on coastal acidification and the CO2 uptake capacity in this area.展开更多
In recent years, with the constant change in the global climate, the effect of climate factors on net primary productivity(NPP) has become a hot research topic. However, two opposing views have been presented in this ...In recent years, with the constant change in the global climate, the effect of climate factors on net primary productivity(NPP) has become a hot research topic. However, two opposing views have been presented in this research area: global NPP increases with global warming, and global NPP decreases with global warming. The main reasons for these two opposite results are the tremendous differences among seasonal and annual climate variables, and the growth of plants in accordance with these climate variables. Therefore, it will fail to fully clarify the relation between vegetation growth and climate changes by research that relies solely on annual data. With seasonal climate variables, we may clarify the relation between vegetation growth and climate changes more accurately. Our research examined the arid and semiarid areas in China(ASAC), which account for one quarter of the total area of China. The ecological environment of these areas is fragile and easily affected by human activities. We analyzed the influence of climate changes, especially the changes in seasonal climate variables, on NPP, with Climatic Research Unit(CRU) climatic data and Moderate Resolution Imaging Spectroradiometer(MODIS) satellite remote data, for the years 2000–2010. The results indicate that: for annual climatic data, the percentage of the ASAC in which NPP is positively correlated with temperature is 66.11%, and 91.47% of the ASAC demonstrates a positive correlation between NPP and precipitation. Precipitation is more positively correlated with NPP than temperature in the ASAC. For seasonal climatic data, the correlation between NPP and spring temperature shows significant regional differences. Positive correlation areas are concentrated in the eastern portion of the ASAC, while the western section of the ASAC generally shows a negative correlation. However, in summer, most areas in the ASAC show a negative correlation between NPP and temperature. In autumn, precipitation is less important in the west, as opposed to the east, in which it is critically important. Temperatures in winter are a limiting factor for NPP throughout the region. The findings of this research not only underline the importance of seasonal climate variables for vegetation growth, but also suggest that the effects of seasonal climate variables on NPP should be explored further in related research in the future.展开更多
Phaeodactylum tricornutum is one of the important marine diatoms for oceanic primary production. Its reproduction has profound significance in the life cycle; however, the nuclear behavior during its sexual reproducti...Phaeodactylum tricornutum is one of the important marine diatoms for oceanic primary production. Its reproduction has profound significance in the life cycle; however, the nuclear behavior during its sexual reproduction was not clear. In this study, we observed the nuclear transition and determined its correlation with cell conjunction. It was found that two cells jointed at their apices first and swung and aligned each other immediately, and nucleus from one cell was able to transfer into another one during cell conjugation. The cell pairs conjugated for nuclear transition were different from those formed in mitosis in hypovalve thickness and cellular arrangement. Our findings proved the existence of sexual reproduction in P. tricornutum.展开更多
Predicting how human activity will influence the response of alpine grasslands to future warming has many uncertainties.In this study, a field experiment with controlled warming and clipping was conducted in an alpine...Predicting how human activity will influence the response of alpine grasslands to future warming has many uncertainties.In this study, a field experiment with controlled warming and clipping was conducted in an alpine meadow at three elevations(4313 m, 4513 m and 4693 m) in Northern Tibet to test the hypothesis that clipping would alter warming effect on biomass production.Open top chambers(OTCs) were used to increase temperature since July,2008 and the OTCs increased air temperature by approximately 0.9o C ~ 1.8o C during the growing in2012.Clipping was conducted three times one year during growing season and the aboveground parts of all live plants were clipped to approximately 0.01 m in height using scissors since 2009.Gross primary production(GPP) was calculated from the Moderate-Resolution Imaging Spectroradiometer GPP algorithm and aboveground plant production was estimated using the surface-measured normalized difference vegetation index in 2012.Warming decreased the GPP, aboveground biomass(AGB) and aboveground net primary production(ANPP) at all three elevations when clipping was not applied.In contrast, warming increased AGB at all three elevations, GPP at the two lower elevations and ANPP at the two higher elevations when clipping was applied.These findings show that clipping reduced the negative effect of warming on GPP, AGB and ANPP, suggesting that clipping may reduce the effect of climate warming on GPP, AGB and ANPP in alpine meadows on the Tibetan Plateau, and therefore, may be a viable strategy for mitigating the effects of climate change on grazing and animal husbandry on the Tibetan Plateau.展开更多
Objective The well-established planar multi-electrode array recording technique was used to investigate neural circuits and temporal plasticity in the hindlimb representation of the rat primary somatosensory cortex (...Objective The well-established planar multi-electrode array recording technique was used to investigate neural circuits and temporal plasticity in the hindlimb representation of the rat primary somatosensory cortex (S1 area) . Methods Freshly dissociated acute brain slices of rats were subject to constant perfusion with oxygenated artificial cerebrospinal fluid (95% O2 and 5% CO2) , and were mounted on a Med64 probe (64 electrodes, 8×8 array) for simultaneous multi-site electrophysiological recordings. Current sources and sinks across all the 64 electrodes were transformed into two-dimensional current source density images by bilinear interpolation at each point of the 64 electrodes. Results The local intracortical connection, which is involved in mediation of downward information flow across layers II-VI, was identified by electrical stimulation (ES) at layers II-III. The thalamocortical connection, which is mainly involved in mediation of upward information flow across layers II-IV, was also characterized by ES at layer IV. The thalamocortical afferent projections were likely to make more synaptic contacts with S1 neurons than the intracortical connections did. Moreover, the S1 area was shown to be more easily activated and more intensively innervated by the thalamocortical afferent projections than by the intracortical connections. Finally, bursting conditioning stimulus (CS) applied within layer IV of the S1 area could success-fully induce long-term potentiation (LTP) in 5 of the 6 slices (83.3%) , while the same CS application at layers II-III induced no LTP in any of the 6 tested slices. Conclusion The rat hindlimb representation of S1 area is likely to have at least 2 patterns of neural circuits on brain slices: one is the intracortical circuit (ICC) formed by interlaminar connections from layers II-III, and the other is the thalamocortical circuit (TCC) mediated by afferent connections from layer IV. Besides, ICC of the S1 area is spatially limited, with less plasticity, while TCC is spatially extensive and exhibits a better plasticity in response to somatosensory afferent stimulation. The present data provide a useful experimental model for further studying microcircuit properties in S1 cortex at the network level in vitro.展开更多
Using a planktonic net(62-?m mesh) and a Rose-Bengal staining method, we studied the spatial distribution of living radiolarians in spring along two sections of the South China Sea(SCS) in spring and discussed the res...Using a planktonic net(62-?m mesh) and a Rose-Bengal staining method, we studied the spatial distribution of living radiolarians in spring along two sections of the South China Sea(SCS) in spring and discussed the responses of living radiolarian distribution to tropical environmental factors. Generally, the highest abundance of living radiolarians occurred at the depth range of 25–75 m, where the chlorophyll-a maximum and the highest primary productivity were. In contrast, the maximum living abundance occurred in the top 25 m in cold eddies in the open seas and the abundance decreased with depth. We found that the inhibition effect of changing salinity(due to runoffs) on living radiolarians was much stronger than the promotion effect of mesoscale cold eddies. We observed that large variation of temperature was unfavorable for living radiolarians. The dominant species composition consisted of tropical-subtropical warm species. We identified some indicator species for tropical environments. Living Didymocyrtis tetrathalamus tetrathalamus could be an indicator for tropical surface water or mixed-layer water, and even for tropical oligotrophic water. Living Tetrapyle octacantha could be used to indicate tropical thermocline and eutrophic environment. Living Acanthodesmia vinculata could indicate tropical surface and subsurface waters. T. octacantha and A. vinculata should only be used as indicators for upwelling in the open seas, i.e., far away from river mouths. Living Siphonosphaera polysiphonia preferred to form colonies, which might be related to the effect of warm eddies. Living Cyrtopera laguncula and living Cornutella profunda occurred in the tropical upper layer, even in the surface layer, which suggests that they should not be used as indicators for intermediate and deep waters.展开更多
Global vegetation photosynthesis and productivity have increased substantially since the 1980s,but this trend is heterogeneous in both time and space.Here,we categorize the secular trend in global vegetation greenness...Global vegetation photosynthesis and productivity have increased substantially since the 1980s,but this trend is heterogeneous in both time and space.Here,we categorize the secular trend in global vegetation greenness into sustained greening,sustained browning and greening-to-browning.We found that by 2016,increased global vegetation greenness had begun to level off,with the area of browning increasing in the last decade,reaching 39.0 million km^(2)(35.9%of the world’s vegetated area).This area is larger than the area with sustained increasing growth(27.8 million km^(2),26.4%);thus,12.0%±3.1%(0.019±0.004 NDVI a^(-1))of the previous earlier increase has been offset since 2010(2010–2016,P<0.05).Global gross primary production also leveled off,following the trend in vegetation greenness in time and space.This leveling off was caused by increasing soil water limitations due to the spatial expansion of drought,whose impact dominated over the impacts of temperature and solar radiation.This response of global gross primary production to soil water limitation was not identified by land submodels within Earth system models.Our results provide empirical evidence that global vegetation greenness and primary production are offset by water stress and suggest that as global warming continues,land submodels may overestimate the world’s capacity to take up carbon with global vegetation greening.展开更多
The carbon and water cycle,an important biophysical process of terrestrial ecosystems,is changed by anthropogenic revegetation in arid and semiarid areas.However,there is still a lack of understanding of the mechanism...The carbon and water cycle,an important biophysical process of terrestrial ecosystems,is changed by anthropogenic revegetation in arid and semiarid areas.However,there is still a lack of understanding of the mechanisms of carbon and water coupling in intrinsic ecosystems in the context of human activities.Based on the CO,and H,O flux measurements of the desert steppe with the planted shrub Caragana liouana,this study explored the carbon and water flux coupling of the ecosystem by analyzing the variations in gross primary productivity(GPP),evapotranspiration(ET)and water use efficiency(WUE)and discussing the driving mechanisms of biological factors.The seasonal variation in climate factors induced a periodic variation pattern of biophysical traits and carbon and water fluxes.The GPP and ET fluctuated in seasons,but the WUE was relatively stable in the growing season.The GP,ET and WUE were significantly driven by global radiation(R,),temperature(T,and T),water vapor pressure deficit,leaf area index and plant water stress index(PWSI).However,R,temperature and PWSI were the most important factors regulating WUE.R,and temperature directly affected WUE with a positive effect but indirectly inhibited WUE by rising PWSl.Plant water stress inhibited photosynthesis and transpiration of the planted shrub community in the desert steppe.When the plant water stress exceeded a threshold(PWSI>0.54),the WUE would decrease since the GPP responded more quickly to the plant water stress than ET.Our findings suggest that policies related to large-scale carbon sequestration initiatives under afforestation must first fully consider the status of water consumption and WUE.展开更多
Net Primary Productivity (NPP) is an important parameter, which is closely connected with global climate change, the global carbon balance and cycle. The study of climate- vegetation interaction is the basis for res...Net Primary Productivity (NPP) is an important parameter, which is closely connected with global climate change, the global carbon balance and cycle. The study of climate- vegetation interaction is the basis for research on the responses of terrestrial ecosystemto global change and mainly comprises two important components: climate vegetation classification and the NPP of the natural vegetation. Comparing NPP estimated from the classification indices-based model with NPP derived from measurements at 3767 sites in China indicated that the classification indices-based model was capable of estimating large scale NPP. Annual cumulative temperature above 0~C and a moisture index, two main factors affecting NPP, were spatially plotted with the ArcGIS grid tool based on measured data in 2348 meteorological stations from 1961 to 2006. The distribution of NPP for potential vegetation classes under present climate conditions was simulated by the classification indices-based model. The model estimated the total NPP of potential terrestrial vegetation of China to fluctuate between 1.93 and 4.54 Pg C year-1. It pro- vides a reliable means for scaling-up from site to regional scales, and the findings could potentially favor China's position in reducing global warming gases as outlined in the Kyoto Protocol in order to fulfill China's commitment of reducing greenhouse gases.展开更多
Fisher discriminant analysis can comprehensively take multiple factors into consideration and effectively conduct separations between two classes.If it can be used to detect the occurrences of drought,drought can be d...Fisher discriminant analysis can comprehensively take multiple factors into consideration and effectively conduct separations between two classes.If it can be used to detect the occurrences of drought,drought can be detected more effectively and accurately.Based on 9-year carbon flux and corresponding meteorological data,soil water content(SWC)and vapor pressure deficit(VPD)were selected as the discriminant factors.Drought occurrences were detected by applying the Fisher discriminant analysis method in an alpine ecosystem in Tibet.Fisher discriminant analysis was successfully applied to detect drought occurrence in an alpine meadow ecosystem.The soil water deficit and atmospheric water deficit were comprehensively taken into consideration.Consequently,this method could detect the onset and end date of droughts more accurately and reasonably.Based on the characteristics of drought and non-drought samples,the discriminant equation was constructed as y=24.46SWC-4.60vPD.When y>1,the days were distributed above the critical line.In addition,when y was greater than one for more than 10 days,it was labeled as one drought event.If the interval between two drought processes was less than 2 days,it was considered one drought event.With increasing the study period and continued accumulation of observation data,the discriminant equation could be further optimized in the future,resulting in more accurate drought detection.展开更多
Brain-specific loss of a microtubule-binding protein collapsin response mediator protein-2(CRMP2)in the mouse recapitulates many schizophrenia-like behaviors of human patients,possibly resulting from associated develo...Brain-specific loss of a microtubule-binding protein collapsin response mediator protein-2(CRMP2)in the mouse recapitulates many schizophrenia-like behaviors of human patients,possibly resulting from associated developmental deficits in neuronal differentiation,path-finding,and synapse formation.However,it is still unclear how the Crmp2 loss affects neuronal circuit function and plasticity.By conducting in vivo and ex vivo electrophysiological recording in the mouse primary visual cortex(V1),we reveal that CRMP2 exerts a key regulation on the timing of postnatal critical period(CP)for experience-dependent circuit plasticity of sensory cortex.In the developing V1,the Crmp2 deficiency induces not only a delayed maturation of visual tuning functions but also a precocious CP for visual input-induced ocular dominance plasticity and its induction activity–coincident binocular inputs right after eye-opening.Mechanistically,the Crmp2 deficiency accelerates the maturation process of cortical inhibitory transmission and subsequently promotes an early emergence of balanced excitatory-inhibitory cortical circuits during the postnatal development.Moreover,the precocious CP plasticity results in deteriorated binocular depth perception in adulthood.Thus,these findings suggest that the Crmp2 deficiency dysregulates the timing of CP for experience-dependent refinement of circuit connections and further leads to impaired sensory perception in later life.展开更多
基金Supported by National Natural Science Foundation of China(30600806)Science and Technology Project of Higher Education of Ningxia Hui Autonomous Region (NJ0626)~~
文摘[Objective]The aim was to analyze the primary speciation of 6 microelements in Glycyrrhiza uralensis Fisch. and provide theoretical basis for explaining pharmacodynamic principle of liquorice and discussing quality control of liquorice planting. [Method]The 6 elements Cu,Zn,Ca,Fe,Mg and Mn in roots of G.uralensis were extracted based on traditional decoction method and were separated into water-soluble state and suspension state by micro porous filtering film. The elements in water-soluble state were detected by flame atomic adsorption spectrophotometry (FAAS). [Result]The results showed that extractive rates of the elements were in the range of 1.71%-60.06%,and immerse-residue ratio in 0.018 3-1.682 0; the results also indicated that the immerse-residue ratio of Zn was biggest (1.68),Zn played an important medical role and might be considered as the best characteristic element in G.uralensis; the recoveries of the elements were ranged from 95.72% to 103.15% and relative standard deviations (RSD) were less than 2.38%. [Conclusion]Because of its high accuracy,FAAS method is feasible for analyzing primary speciation of microelements in G.uralensis.
基金funded by the NSFC(No.40036010)subsidized by Special Funds from the National Key BaBic Research Program of P.R.China(G19990437)+2 种基金the Postdoctoral Foundation of Ocean University of Qingdaothe Director’s Foundation of the Beihai Monitoring Center of the State Oceanic Administrationthe Foundation of Shanghai Fisheries University
文摘Analysis and comparison of Jiaozhou Bay data collected from May 1991 to February 1994(12 seasonal investigations) provided by the Ecological Station of Jiaozhou Bay revealed the characteristic spatiotemporal variation of the ambient concentration Si:DIN and Si:16P ratios and the seasonal variation of Jiaozhou Bay Si:DIN and Si:16P ratios showing that the Si:DIN ratios were < 1 throughout the year in Jiaozhou Bay; and that the Si:16P ratios were < 1 throughout Jiaozhou Bay in spring, autumn and winter. The results proved that silicate limited phytoplankton growth in spring, autumn and winter in Jiaozhou Bay. Analysis of the Si:DIN and Si:P ratios showed that the nutrient Si has been limiting the growth of phytoplankton throughout the year in some Jiaozhou Bay waters; and that the silicate deficiency changed the phytoplankton assemblage structure. Analysis of discontinuous 1962 to 1998 nutrient data showed that there was no N or P limitation of phytoplankton growth in that period. The authors consider that the annual cyclic change of silicate limits phytoplankton growth in spring, autumn and winter every year in Jiaozhou Bay; and that in many Jiaozhou Bay waters where the phytoplankton as the predominant species need a great amount of silicate, analysis of the nutrients N or P limitation of phytoplankton growth relying only on the N and P nutrients and DIN:P ratio could yield inaccurate conclusions. The results obtained by applying the rules of absolute and relative limitation fully support this view. The authors consider that the main function of nutrient silicon is to regulate and control the mechanism of the phytoplankton growth process in the ecological system in estuaries, bays and the sea. The authors consider that according to the evolution theory of Darwin, continuous environmental pressure gradually changes the phytoplankton assemblage's structure and the physiology of diatoms. Diatoms requiring a great deal of silicon either constantly decrease or reduce their requirement for silicon. This will cause a series of huge changes in the ecosystem so that the whole ecosystem requires continuous renewal, change and balancing. Human beings have to reduce marine pollution and enhance the capacity of continental sources to transport silicon to sustain the continuity and stability in the marine ecosystem.nt
文摘AIM: To evaluate the expression of fragile histidine triad (FHIT) gene protein, product of a candidate tumor suppressor, and to investigate the relationship between FHIT, cell apoptosis and proliferation, and pathological features of primary hepatocellular carcinoma (HCC). METHODS: Forty-seven HCC and ten normal liver specimens were collected during surgical operation between 2001 and 2003. FHIT and proliferating cell nuclear antigen (PCNA) expression were detected by immunohistochemistry, and apoptotic level was evaluated by terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) assay on the tissue sections. RESULTS: All normal liver tissues showed a strong expression of FHIT, whereas 28 of 47 (59.6%) carcinomas showed a significant loss or absence of FHIT expression (P= 0.001). The proportion of reduced FHIT expression in those carcinomas at stages Ⅲ-Ⅳ (70.6%) and in those with extrahepatic metastasis (86.7%) showed an increasing trend compared with those at stages HI (30.8%, P= 0.013) and those without metastasis (46.9%, P = 0.010) respectively. Apoptotic incidence in advanced TNM stage carcinoma and those with positive FHIT expression was higher than that in early stage carcinoma (P=0.030) and in those with negative FHIT expression (P=0.044) respectively. The proliferating potential of hepatocellular carcinoma was associated with FHIT expression (P= 0.016) and the aggressive feature (P = 0.019). Kaplan-Meier analysis demonstrated that the survival time of these 47 patients correlated with TNM stage, FHIT expression and metastasis. CONCLUSION: There is marked loss or absence of FHIT expression, as well as abnormal apoptosis-prdiferation balance in HCC. FHIT may play an important role in carcinogenesis and development of HCC.
基金supported by the National Basic Research Program of China(973 program,No.2010CB428903)Public Science and Technology Research Funds the Projects of Ocean(No.201105014)+1 种基金National Natural Science Foundation of China(No.41203085)the Fundamental Research Funds for the Second Institute of Oceanography,SOA(JT0906)
文摘The eutrophication, hypoxia and coastal acidification are attracting more and more attention. In this study, inorganic carbon parameters, including dissolved inorganic carbon (DIC), total alkalinity (TA) and calculated partial pressure of CO2 (pCO2), obtained from a summer cruise in August, 2009, were used to investigate their integrated response to biological processes accompanying the oxygen depletion in the areas off the Changjiang Estuary. According to the observations, the typical hypoxia occurred in the bottom water just outside the Changjiang Estuary with Dissolved Oxygen (DO) lower than 2.00 mg L^-1. The biological uptake in the surface water and the decomposition of organic matter in the bottom water were fully coupled with each other. The high concentration of Chl_a (Chl_a = 10.9μgL^-1) and DO (9.25 mgL^-1), profoundly decreased DIC concentration 0828 μmolkg^-1) and elevated pH (8.42) was observed in the surface water. The correspondingly increased DIC and depletion of oxygen were observed in the bottom water. The semi-quantitative analysis proved that the locally-produced phytoplankton, determined by primary productivity, was deposited to the bottom and contributed about 76% of total amount of the organic carbon decomposition in the bottom. However, in the bottom hypoxia (DO = 2.05 mgL^-1) area observed in the Southern Zhejiang coastal water, the responding patterns of inorganic carbon parameters deviated from the previous one. The expanding of Changjiang Diluted Water (CDW), the adding of Hangzhou Bay water (with high DIC concentration) and Coastal Current together modify the DIC background value in this area, and the local degeneration and upwelling process may also help to offset the local DIC removed by net biological uptake in surface water. In addition when the mixing occurring in autumn, which may break the summer stratification, the excess release of high DIC in the bottom water to the subsurface water could have an important influence on coastal acidification and the CO2 uptake capacity in this area.
基金the Strategic Priority Research Program-Climate Change:Carbon Budget and Relevant Issues of Chinese Academy of Sciences(No.XDA05060104)
文摘In recent years, with the constant change in the global climate, the effect of climate factors on net primary productivity(NPP) has become a hot research topic. However, two opposing views have been presented in this research area: global NPP increases with global warming, and global NPP decreases with global warming. The main reasons for these two opposite results are the tremendous differences among seasonal and annual climate variables, and the growth of plants in accordance with these climate variables. Therefore, it will fail to fully clarify the relation between vegetation growth and climate changes by research that relies solely on annual data. With seasonal climate variables, we may clarify the relation between vegetation growth and climate changes more accurately. Our research examined the arid and semiarid areas in China(ASAC), which account for one quarter of the total area of China. The ecological environment of these areas is fragile and easily affected by human activities. We analyzed the influence of climate changes, especially the changes in seasonal climate variables, on NPP, with Climatic Research Unit(CRU) climatic data and Moderate Resolution Imaging Spectroradiometer(MODIS) satellite remote data, for the years 2000–2010. The results indicate that: for annual climatic data, the percentage of the ASAC in which NPP is positively correlated with temperature is 66.11%, and 91.47% of the ASAC demonstrates a positive correlation between NPP and precipitation. Precipitation is more positively correlated with NPP than temperature in the ASAC. For seasonal climatic data, the correlation between NPP and spring temperature shows significant regional differences. Positive correlation areas are concentrated in the eastern portion of the ASAC, while the western section of the ASAC generally shows a negative correlation. However, in summer, most areas in the ASAC show a negative correlation between NPP and temperature. In autumn, precipitation is less important in the west, as opposed to the east, in which it is critically important. Temperatures in winter are a limiting factor for NPP throughout the region. The findings of this research not only underline the importance of seasonal climate variables for vegetation growth, but also suggest that the effects of seasonal climate variables on NPP should be explored further in related research in the future.
基金supported by the State Basic Research and Development Program of China (973 Program) (2011-CB200901)the Promotive Research Fund for Excellent Young and Middle-aged Scientists of Shandong Province(BS2010SW037)the Opening Research Project of Experimental Marine Biology Laboratory,Institute of Oceanology,Chinese Academy of Sciences
文摘Phaeodactylum tricornutum is one of the important marine diatoms for oceanic primary production. Its reproduction has profound significance in the life cycle; however, the nuclear behavior during its sexual reproduction was not clear. In this study, we observed the nuclear transition and determined its correlation with cell conjunction. It was found that two cells jointed at their apices first and swung and aligned each other immediately, and nucleus from one cell was able to transfer into another one during cell conjugation. The cell pairs conjugated for nuclear transition were different from those formed in mitosis in hypovalve thickness and cellular arrangement. Our findings proved the existence of sexual reproduction in P. tricornutum.
基金funded by the National Natural Science Foundation of China(Grant No.41171084)the Natural Science Foundation of Tibet Autonomous Region(Response of species richness and aboveground biomass to warming in the alpine meadows of Tibet)
文摘Predicting how human activity will influence the response of alpine grasslands to future warming has many uncertainties.In this study, a field experiment with controlled warming and clipping was conducted in an alpine meadow at three elevations(4313 m, 4513 m and 4693 m) in Northern Tibet to test the hypothesis that clipping would alter warming effect on biomass production.Open top chambers(OTCs) were used to increase temperature since July,2008 and the OTCs increased air temperature by approximately 0.9o C ~ 1.8o C during the growing in2012.Clipping was conducted three times one year during growing season and the aboveground parts of all live plants were clipped to approximately 0.01 m in height using scissors since 2009.Gross primary production(GPP) was calculated from the Moderate-Resolution Imaging Spectroradiometer GPP algorithm and aboveground plant production was estimated using the surface-measured normalized difference vegetation index in 2012.Warming decreased the GPP, aboveground biomass(AGB) and aboveground net primary production(ANPP) at all three elevations when clipping was not applied.In contrast, warming increased AGB at all three elevations, GPP at the two lower elevations and ANPP at the two higher elevations when clipping was applied.These findings show that clipping reduced the negative effect of warming on GPP, AGB and ANPP, suggesting that clipping may reduce the effect of climate warming on GPP, AGB and ANPP in alpine meadows on the Tibetan Plateau, and therefore, may be a viable strategy for mitigating the effects of climate change on grazing and animal husbandry on the Tibetan Plateau.
基金supported by the National Basic Research Development Program(973)of China(No.2006CB500800)National Innovation Team Program of Ministry of Education(No.IRT0560)National Natural Science Foundation of China(No.30670692 and 30770668)
文摘Objective The well-established planar multi-electrode array recording technique was used to investigate neural circuits and temporal plasticity in the hindlimb representation of the rat primary somatosensory cortex (S1 area) . Methods Freshly dissociated acute brain slices of rats were subject to constant perfusion with oxygenated artificial cerebrospinal fluid (95% O2 and 5% CO2) , and were mounted on a Med64 probe (64 electrodes, 8×8 array) for simultaneous multi-site electrophysiological recordings. Current sources and sinks across all the 64 electrodes were transformed into two-dimensional current source density images by bilinear interpolation at each point of the 64 electrodes. Results The local intracortical connection, which is involved in mediation of downward information flow across layers II-VI, was identified by electrical stimulation (ES) at layers II-III. The thalamocortical connection, which is mainly involved in mediation of upward information flow across layers II-IV, was also characterized by ES at layer IV. The thalamocortical afferent projections were likely to make more synaptic contacts with S1 neurons than the intracortical connections did. Moreover, the S1 area was shown to be more easily activated and more intensively innervated by the thalamocortical afferent projections than by the intracortical connections. Finally, bursting conditioning stimulus (CS) applied within layer IV of the S1 area could success-fully induce long-term potentiation (LTP) in 5 of the 6 slices (83.3%) , while the same CS application at layers II-III induced no LTP in any of the 6 tested slices. Conclusion The rat hindlimb representation of S1 area is likely to have at least 2 patterns of neural circuits on brain slices: one is the intracortical circuit (ICC) formed by interlaminar connections from layers II-III, and the other is the thalamocortical circuit (TCC) mediated by afferent connections from layer IV. Besides, ICC of the S1 area is spatially limited, with less plasticity, while TCC is spatially extensive and exhibits a better plasticity in response to somatosensory afferent stimulation. The present data provide a useful experimental model for further studying microcircuit properties in S1 cortex at the network level in vitro.
基金supported by the National Natural Science Foundation of China(Grant Nos.41276051,91228207)the National Basic Research Program of China(Grant No.2013CB956102)+1 种基金the Ministry of Science and Technology Foundation Project of China(Grant No.2008FY110100)the National Natural Science Foundation of China(Grant Nos.41076026,40906030)
文摘Using a planktonic net(62-?m mesh) and a Rose-Bengal staining method, we studied the spatial distribution of living radiolarians in spring along two sections of the South China Sea(SCS) in spring and discussed the responses of living radiolarian distribution to tropical environmental factors. Generally, the highest abundance of living radiolarians occurred at the depth range of 25–75 m, where the chlorophyll-a maximum and the highest primary productivity were. In contrast, the maximum living abundance occurred in the top 25 m in cold eddies in the open seas and the abundance decreased with depth. We found that the inhibition effect of changing salinity(due to runoffs) on living radiolarians was much stronger than the promotion effect of mesoscale cold eddies. We observed that large variation of temperature was unfavorable for living radiolarians. The dominant species composition consisted of tropical-subtropical warm species. We identified some indicator species for tropical environments. Living Didymocyrtis tetrathalamus tetrathalamus could be an indicator for tropical surface water or mixed-layer water, and even for tropical oligotrophic water. Living Tetrapyle octacantha could be used to indicate tropical thermocline and eutrophic environment. Living Acanthodesmia vinculata could indicate tropical surface and subsurface waters. T. octacantha and A. vinculata should only be used as indicators for upwelling in the open seas, i.e., far away from river mouths. Living Siphonosphaera polysiphonia preferred to form colonies, which might be related to the effect of warm eddies. Living Cyrtopera laguncula and living Cornutella profunda occurred in the tropical upper layer, even in the surface layer, which suggests that they should not be used as indicators for intermediate and deep waters.
基金the National Key Research and Development Program of China(2017YFA0604700)the National Natural Science Foundation of China(41722104)+3 种基金the Key Research Project of Chinese Academy of Sciences(QYZDY-SSWDQC025 and 2019DC0027)supported by the European Research Council Synergy(ERC-2013-Sy G-610028 IMBALANCE-P)the Spanish Government(CGL2016-79835)the Catalan Government(SGR 2017-1005)。
文摘Global vegetation photosynthesis and productivity have increased substantially since the 1980s,but this trend is heterogeneous in both time and space.Here,we categorize the secular trend in global vegetation greenness into sustained greening,sustained browning and greening-to-browning.We found that by 2016,increased global vegetation greenness had begun to level off,with the area of browning increasing in the last decade,reaching 39.0 million km^(2)(35.9%of the world’s vegetated area).This area is larger than the area with sustained increasing growth(27.8 million km^(2),26.4%);thus,12.0%±3.1%(0.019±0.004 NDVI a^(-1))of the previous earlier increase has been offset since 2010(2010–2016,P<0.05).Global gross primary production also leveled off,following the trend in vegetation greenness in time and space.This leveling off was caused by increasing soil water limitations due to the spatial expansion of drought,whose impact dominated over the impacts of temperature and solar radiation.This response of global gross primary production to soil water limitation was not identified by land submodels within Earth system models.Our results provide empirical evidence that global vegetation greenness and primary production are offset by water stress and suggest that as global warming continues,land submodels may overestimate the world’s capacity to take up carbon with global vegetation greening.
基金the National Natural Science Foundation of China(41967027)the Natural Science Foundation of Ningxia Province(2022AAC02011)+2 种基金the Excellent Talents Support Program of Ningxia Province(RQoo12)the Key Research and Development Program of Ningxia Province(2021BEG02010)the Special Plan for Local Sci-Tech Development Guided by the Central Government of China.
文摘The carbon and water cycle,an important biophysical process of terrestrial ecosystems,is changed by anthropogenic revegetation in arid and semiarid areas.However,there is still a lack of understanding of the mechanisms of carbon and water coupling in intrinsic ecosystems in the context of human activities.Based on the CO,and H,O flux measurements of the desert steppe with the planted shrub Caragana liouana,this study explored the carbon and water flux coupling of the ecosystem by analyzing the variations in gross primary productivity(GPP),evapotranspiration(ET)and water use efficiency(WUE)and discussing the driving mechanisms of biological factors.The seasonal variation in climate factors induced a periodic variation pattern of biophysical traits and carbon and water fluxes.The GPP and ET fluctuated in seasons,but the WUE was relatively stable in the growing season.The GP,ET and WUE were significantly driven by global radiation(R,),temperature(T,and T),water vapor pressure deficit,leaf area index and plant water stress index(PWSI).However,R,temperature and PWSI were the most important factors regulating WUE.R,and temperature directly affected WUE with a positive effect but indirectly inhibited WUE by rising PWSl.Plant water stress inhibited photosynthesis and transpiration of the planted shrub community in the desert steppe.When the plant water stress exceeded a threshold(PWSI>0.54),the WUE would decrease since the GPP responded more quickly to the plant water stress than ET.Our findings suggest that policies related to large-scale carbon sequestration initiatives under afforestation must first fully consider the status of water consumption and WUE.
文摘Net Primary Productivity (NPP) is an important parameter, which is closely connected with global climate change, the global carbon balance and cycle. The study of climate- vegetation interaction is the basis for research on the responses of terrestrial ecosystemto global change and mainly comprises two important components: climate vegetation classification and the NPP of the natural vegetation. Comparing NPP estimated from the classification indices-based model with NPP derived from measurements at 3767 sites in China indicated that the classification indices-based model was capable of estimating large scale NPP. Annual cumulative temperature above 0~C and a moisture index, two main factors affecting NPP, were spatially plotted with the ArcGIS grid tool based on measured data in 2348 meteorological stations from 1961 to 2006. The distribution of NPP for potential vegetation classes under present climate conditions was simulated by the classification indices-based model. The model estimated the total NPP of potential terrestrial vegetation of China to fluctuate between 1.93 and 4.54 Pg C year-1. It pro- vides a reliable means for scaling-up from site to regional scales, and the findings could potentially favor China's position in reducing global warming gases as outlined in the Kyoto Protocol in order to fulfill China's commitment of reducing greenhouse gases.
基金the National Natural Science Foundation of China(41725003,31600362 and 32061143037)the National Key Research and Development Program of China(2017YFA0604801)the China Postdoctoral Science Foundation funded project(2018M631819 and 2021M692230)。
文摘Fisher discriminant analysis can comprehensively take multiple factors into consideration and effectively conduct separations between two classes.If it can be used to detect the occurrences of drought,drought can be detected more effectively and accurately.Based on 9-year carbon flux and corresponding meteorological data,soil water content(SWC)and vapor pressure deficit(VPD)were selected as the discriminant factors.Drought occurrences were detected by applying the Fisher discriminant analysis method in an alpine ecosystem in Tibet.Fisher discriminant analysis was successfully applied to detect drought occurrence in an alpine meadow ecosystem.The soil water deficit and atmospheric water deficit were comprehensively taken into consideration.Consequently,this method could detect the onset and end date of droughts more accurately and reasonably.Based on the characteristics of drought and non-drought samples,the discriminant equation was constructed as y=24.46SWC-4.60vPD.When y>1,the days were distributed above the critical line.In addition,when y was greater than one for more than 10 days,it was labeled as one drought event.If the interval between two drought processes was less than 2 days,it was considered one drought event.With increasing the study period and continued accumulation of observation data,the discriminant equation could be further optimized in the future,resulting in more accurate drought detection.
基金the National Natural Science Foundation of China(32071025,31921002,and 31730108)the Beijing Municipal Science&Technology Commission(Z181100001518001)+1 种基金the Interdisciplinary Research Fund of Beijing Normal Universitythe Strategic Priority Research Program and Innovation Program of the Chinese Academy of Sciences(XDB32020100)。
文摘Brain-specific loss of a microtubule-binding protein collapsin response mediator protein-2(CRMP2)in the mouse recapitulates many schizophrenia-like behaviors of human patients,possibly resulting from associated developmental deficits in neuronal differentiation,path-finding,and synapse formation.However,it is still unclear how the Crmp2 loss affects neuronal circuit function and plasticity.By conducting in vivo and ex vivo electrophysiological recording in the mouse primary visual cortex(V1),we reveal that CRMP2 exerts a key regulation on the timing of postnatal critical period(CP)for experience-dependent circuit plasticity of sensory cortex.In the developing V1,the Crmp2 deficiency induces not only a delayed maturation of visual tuning functions but also a precocious CP for visual input-induced ocular dominance plasticity and its induction activity–coincident binocular inputs right after eye-opening.Mechanistically,the Crmp2 deficiency accelerates the maturation process of cortical inhibitory transmission and subsequently promotes an early emergence of balanced excitatory-inhibitory cortical circuits during the postnatal development.Moreover,the precocious CP plasticity results in deteriorated binocular depth perception in adulthood.Thus,these findings suggest that the Crmp2 deficiency dysregulates the timing of CP for experience-dependent refinement of circuit connections and further leads to impaired sensory perception in later life.