Effects of initial δ phase(Ni_3Nb) on the hot tensile deformation behaviors and material constants of a Ni-based superalloy were investigated over wide ranges of strain rate and deformation temperature. It is found...Effects of initial δ phase(Ni_3Nb) on the hot tensile deformation behaviors and material constants of a Ni-based superalloy were investigated over wide ranges of strain rate and deformation temperature. It is found that the true stress-true strain curves exhibit peak stress at a small strain, and the peak stress increases with the increase of initial δ phase. After the peak stress, initial δ phase promotes the dynamic softening behaviors, resulting in the decreased flow stress. An improved Arrhenius constitutive model is proposed to consider the synthetical effects of initial δ phase, deformation temperature, strain rate, and strain on hot deformation behaviors. In the improved model, material constants are expressed as the functions of the content of initial δ phase and strain. A good agreement between the predicted and measured results indicates that the improved Arrhenius constitutive model can well describe hot deformation behaviors of the studied Ni-based superalloy.展开更多
Based on day-to-day minimal ground temperatures in 1961-2010 from 62 meteorological stations in Shanxi province,the variation characteristics of Shanxi's first frost were analyzed.The results show:Shanxi's average ...Based on day-to-day minimal ground temperatures in 1961-2010 from 62 meteorological stations in Shanxi province,the variation characteristics of Shanxi's first frost were analyzed.The results show:Shanxi's average first frost date was October 7,and the first frost date of the north was generally earlier than the south; the average first frost date had obvious negative correlations with altitude and latitude,and the correlation coefficients were respectively-0.85 and-0.82.M-K mutation test shows that the first frost date of most meteorological stations had mutations from 1961 to 2010,mainly in the years from 1981 to 2000,and the mutation year of the central area was generally later than the north and the south; the mutation year had negative correlations with altitude and latitude,and the correlation coefficients were respectively-0.45 and-0.51.The first frost dates of most stations had a delaying trend.Specifically,the large delaying scope region was located in the north and the mid-east,and the large advancing scope region was located in the south and the south central.The changing trend had negative correlations with altitude and latitude,and the correlation coefficients were respectively-0.30 and-0.37.Probabilities of the mild,the moderate and the severe first frost were 62%-82%,6%-26% and 4%-22%,respectively,and the maximum probabilities appeared in the south central & northeast,the central & north central and the west & north central.Correlation of altitude with first frost tends to be volatile upon frost grade and latitude has bigger impacts on first frost probabilities.展开更多
The static test of 13 square hollow section(SHS) X-joints with different β and different types of plate reinforcement under in-plane moment in brace was carried out. Experimental test schemes, failure modes of specim...The static test of 13 square hollow section(SHS) X-joints with different β and different types of plate reinforcement under in-plane moment in brace was carried out. Experimental test schemes, failure modes of specimens, moment-vertical displacement curves, moment-deformation of the chord, and strain strength distribution curves were presented. The effect of β and plate reinforcement types on in-plane flexural property of SHS X-joints was studied. Results show that punching shear of chord face disappears, brace material fracture appears and concave and convex deformation of chord decrease when either collar plates or doubler plates were welded on chord face. Moment-vertical displacement curves of all specimens have obvious elastic, elastic-plastic and plastic stages. As β increases, the in-plane flexural ultimate capacity and initial stiffness of joints of the same plate reinforcement type increase, but ductility of joints decreases. With the same β, the in-plane flexural initial stiffness and ultimate capacity of doubler plate reinforced joints, collar plate reinforced joints, and unreinforced joints decrease progressively. Thickness of reinforcement plate has no obvious effect on in-plane flexural initial stiffness and ultimate capacity of joints. As thickness of reinforcement plate increases, the ductility of reinforced X-joints decreases. The concave and convex deformation of every specimen has good symmetry;as β increases, the yield and ultimate deformation of chord decrease.展开更多
Microstructural development in hot working of TA15titanium alloy with primary stripαstructure was investigated withthe aim to globularizeαstrips.Results show that the mechanisms of morphology transformation are the ...Microstructural development in hot working of TA15titanium alloy with primary stripαstructure was investigated withthe aim to globularizeαstrips.Results show that the mechanisms of morphology transformation are the same to the spheroidizationmechanisms of lamellar structure.Boundary splitting and termination migration are more important than coarsening due to the largesize of stripα.Theαstrips are stable in annealing due to the unfavorable geometrical orientation of intra-αboundaries,the largethickness of strip and the geometrical stability ofαparticles.Predeformation and low speed deformation accelerate globularization ofαstrips in the following ways:direct changing of particle shape,promotion of boundary splitting and termination migration byincreasing high angle grain boundaries and interfacial area,promotion of coarsening by forming dislocation structures.Largepredeformation combined with high temperature annealing is a feasible way to globularize stripα.展开更多
AIM:Many defense factors of the mother's colostrum or milk protect infants from intestinal, respiratory and systemic infections. In the present study, we investigated the effect of colostrum and mature human milk ...AIM:Many defense factors of the mother's colostrum or milk protect infants from intestinal, respiratory and systemic infections. In the present study, we investigated the effect of colostrum and mature human milk on E. histolytica parasites in vitro.METHODS:Samples of human milk were collected from 5 healthy lactating mothers.The medium with human milk at concentrations of 2%, 5% and 10% was obtained.RESULTS:The lethal effect of E. histolytica on the medium supplemented with different concentrations of both colostrum and mature human milk was significant during the first 30min. We also detected that the results of colostrum and mature human milk were similar. No statistically significant differences were found between same concentrations of colostrum and mature human milk at the same times.CONCLUSION:Colostrum and mature human milk have significant lethal effect on E. histolytica and protect against its infection in breast fed children.展开更多
The semisolid slurry of the 6061 wrought aluminum alloy was prepared by the self-inoculation method(SIM). The effects of the isothermal holding parameters on microstructures of rheo-diecastings were investigated, an...The semisolid slurry of the 6061 wrought aluminum alloy was prepared by the self-inoculation method(SIM). The effects of the isothermal holding parameters on microstructures of rheo-diecastings were investigated, and the solidification behavior of 6061 wrought aluminum alloy during the rheo-diecasting process was analyzed using OM, SEM, EDS and EBSD. The results indicate that the isothermal holding process during slurry preparation has great effect on primary α(Al) particles(α1), but has little effect on the microstructure of secondary solidification in the process of thin-walled rheo-diecasting. Nucleation is expected to take place in the entire remaining liquid when the remaining liquid fills the die cavity, and the secondary solidification particles(α2) are formed after the process of stable growth, unstable growth and merging. The solute concentration of remaining liquid is higher than that of the original alloy due to the existence of α1 particles, hence the contents of Mg and Si in α2 particles are higher than those in α1 particles.展开更多
A new phenomenological and empirically-based constitutive model was proposed to modify the term in the original Johnson−Cook constitutive model.The new model can be used to describe and predict the flow stress of AA10...A new phenomenological and empirically-based constitutive model was proposed to modify the term in the original Johnson−Cook constitutive model.The new model can be used to describe and predict the flow stress of AA1070 aluminum with different initial grain sizes in the hot working process.This developed model considers thermal softening,strain-rate hardening,strain hardening,initial grain size,and interactions with each other and can correctly model the behavior of AA1070 at elevated temperature with different strains,strain rates,and initial grain sizes.The hot flow behavior of AA1070 was investigated through compression tests over wide ranges of temperature from 623 to 773 K,strain rate from 0.005 to 0.5 s−1 and initial grain size from 50 to 450μm.Results show that the initial grain size has a significant effect on the flow behavior of AA1070.Then,correlation coefficient(R),average absolute relative error(AARE),and relative error were examined for comparative predictability of the model.Results show that flow stresses for different initial grain sizes calculated by the new proposed model perfectly correlate with experimental ones,with a mean relative error of 1.19%,which confirms that the new modified Johnson−Cook relation can give a precise estimation of the hot flow stress of AA1070 aluminum by considering the initial grain size.展开更多
The isothermal coarsening behavior of primary solid particles in A356 aluminum alloy semi-solid slurry produced by angular oscillation (AO) technique was investigated.The comparison between the calculation and experim...The isothermal coarsening behavior of primary solid particles in A356 aluminum alloy semi-solid slurry produced by angular oscillation (AO) technique was investigated.The comparison between the calculation and experimental results shows good quantitative agreement with Lifshitz-Slyozov-Wagner theory.The results show that the variation in shape factor and solid fraction is not significant,the average particle size increases with increasing holding time at the expense of the particle density.Ostwald repining is most likely the predominant growth mechanism in the AO-treated semi-solid slurry during rheocasting.The differences of coarsening occurred in rheocasting and partial re-melting process were also discussed.展开更多
This paper mainly investigates the effects of initial static shear stress and grain shape on the liquefaction induced large deformation of saturated sand under torsional shear.Nanjing sand,mainly composed of platy gra...This paper mainly investigates the effects of initial static shear stress and grain shape on the liquefaction induced large deformation of saturated sand under torsional shear.Nanjing sand,mainly composed of platy grains,is tested with different initial static shear stress ratio(SSR)using a hollow column torsional shear apparatus.The tests find that the saturated Nanjing sand reaches full liquefaction under the superposition of initial static shear stress and cyclic stress for both stress reversal and non-reversal cases.However,it requires a large number of loading cycles to reach full liquefaction if stress reversal does not occur.With increasing the initial static stress,the large deformation of the Nanjing sand should mainly induced by the cyclic liquefaction firstly under a smaller initial shear stress,and then it should be induced by the residual deformation failure.The critical point occurs approximately when the initial shear stress is close to the amplitude of the cyclic shear stress.Meanwhile,it shows that grain angularity increases the liquefaction resistance when the initial static shear stress is zero.A small initial static shear stress causes the larger loss of liquefaction resistance for angular sand than rounded sand.At a high initial SSR,the angular sand is more resistant to the large residual deformation failure than the rounded sand.展开更多
Competition of multiple Gortler modes in hypersonic boundary layer flows are investigated with the local and marching methods. The wall-layer mode (mode W) and the trapped-layer mode (mode T) both occur in the com...Competition of multiple Gortler modes in hypersonic boundary layer flows are investigated with the local and marching methods. The wall-layer mode (mode W) and the trapped-layer mode (mode T) both occur in the compressible boundary layer where there exists a temperature adjustment layer near the upper edge. The mode T has the largest growth rate at a lower Gortler number while the mode W dominates at larger G/Srtler numbers. These two modes are both responsible for the flow transition in the hypersonic flows especially when Gortler number is in the high value range in which the crossover of these two modes takes place. Such high Gortler numbers are virtually far beyond the neutral regime. The nonparallel base flows, therefore, cease to influence the stability behavior of the Gortler modes. The effects of the Mach number on the multiple Gortler modes are studied within a chosen Mach number of 0.95, 2, 4 and 6. When the flow Mach number is sufficiently large, e.g., Ma ≥4, the growth rate crossover of the mode T and mode W occurs both in the conventional G-β map as well as on the route downstream for a fixed wavelength disturbance. Four particular regions (Region T, T-W, W-T and W) around the crossover point are highlighted with the marching analysis and the result matches that of the local analysis. The initial disturbance of a normal mode maintains the shape in its corresponding dominating region while a shape-transformation occurs outside this region.展开更多
Under repeated train-induced loads, cement and emulsified asphalt mortar(CA mortar) as a viscoelastic material has a time-dependent deformation, part of which is irreversible. This could lead to debonding between the ...Under repeated train-induced loads, cement and emulsified asphalt mortar(CA mortar) as a viscoelastic material has a time-dependent deformation, part of which is irreversible. This could lead to debonding between the mortar layer and the track slab. Based on the theory of viscoelasticity and the analytical method of the time hardening law(THL), the viscoelastic deformation behavior of CA mortar was studied. Using ABAQUS, we established a solid model of China railway track system(CRTS) Ⅰ prefabricated slab track, with CA mortar at different initial Young’s moduli under cyclic loading corresponding to the influence of actual train loads. The results reveal that the fitted parameters of the THL for CA mortar are suitable for describing its viscoelastic deformation. As the initial Young’s modulus increases, the strain difference before and after cyclic loading gradually decreases, and the displacement difference increases from 0.2 mm to 0.6 mm. The deformation mainly occurs at the end of a mortar layer with longitudinal distribution of about 2.5 times the fasteners’ spacing. It follows that the viscoelastic performance of CA mortar is one of the most important reasons that cause debonding underneath the track slab. Therefore, we suggest that the adverse effects of viscoelastic behavior of CA mortar should be considered when researching such deformation and damage.展开更多
基金Projects(5137550251305466) supported by the National Natural Science Foundation of China+2 种基金Project(2015CX002) supported by the Innovation-driven Plan in Central South University,ChinaProject(2013CB035801) supported by the National Basic Research Program of ChinaProject(2015NGQ001) supported by Key Laboratory of Efficient&Clean Energy Utilization,College of Hunan Province,China
文摘Effects of initial δ phase(Ni_3Nb) on the hot tensile deformation behaviors and material constants of a Ni-based superalloy were investigated over wide ranges of strain rate and deformation temperature. It is found that the true stress-true strain curves exhibit peak stress at a small strain, and the peak stress increases with the increase of initial δ phase. After the peak stress, initial δ phase promotes the dynamic softening behaviors, resulting in the decreased flow stress. An improved Arrhenius constitutive model is proposed to consider the synthetical effects of initial δ phase, deformation temperature, strain rate, and strain on hot deformation behaviors. In the improved model, material constants are expressed as the functions of the content of initial δ phase and strain. A good agreement between the predicted and measured results indicates that the improved Arrhenius constitutive model can well describe hot deformation behaviors of the studied Ni-based superalloy.
基金Supported by China National 973 Project(2012CB955903)Meteorological Key Technology Integration and Application Projects of China Meteorological Administration(CMAGJ2011M10)Natural Science Fund of Shanxi Province(2013011038)~~
文摘Based on day-to-day minimal ground temperatures in 1961-2010 from 62 meteorological stations in Shanxi province,the variation characteristics of Shanxi's first frost were analyzed.The results show:Shanxi's average first frost date was October 7,and the first frost date of the north was generally earlier than the south; the average first frost date had obvious negative correlations with altitude and latitude,and the correlation coefficients were respectively-0.85 and-0.82.M-K mutation test shows that the first frost date of most meteorological stations had mutations from 1961 to 2010,mainly in the years from 1981 to 2000,and the mutation year of the central area was generally later than the north and the south; the mutation year had negative correlations with altitude and latitude,and the correlation coefficients were respectively-0.45 and-0.51.The first frost dates of most stations had a delaying trend.Specifically,the large delaying scope region was located in the north and the mid-east,and the large advancing scope region was located in the south and the south central.The changing trend had negative correlations with altitude and latitude,and the correlation coefficients were respectively-0.30 and-0.37.Probabilities of the mild,the moderate and the severe first frost were 62%-82%,6%-26% and 4%-22%,respectively,and the maximum probabilities appeared in the south central & northeast,the central & north central and the west & north central.Correlation of altitude with first frost tends to be volatile upon frost grade and latitude has bigger impacts on first frost probabilities.
基金Projects(51278209 and 51478047) supported by the National Natural Science Foundation of ChinaProject(ZQN-PY110) supported by Promotion Program for Young and Middle-aged Teacher in Science and Technology Research of Huaqiao University,China+1 种基金Project(2014FJ-NCET-ZR03) supported by Program for New Century Excellent Talents in Fujian Province University,ChinaProject(JA13005) supported by Incubation Programme for Excellent Young Science and Technology Talents in Fujian Province Universities,China
文摘The static test of 13 square hollow section(SHS) X-joints with different β and different types of plate reinforcement under in-plane moment in brace was carried out. Experimental test schemes, failure modes of specimens, moment-vertical displacement curves, moment-deformation of the chord, and strain strength distribution curves were presented. The effect of β and plate reinforcement types on in-plane flexural property of SHS X-joints was studied. Results show that punching shear of chord face disappears, brace material fracture appears and concave and convex deformation of chord decrease when either collar plates or doubler plates were welded on chord face. Moment-vertical displacement curves of all specimens have obvious elastic, elastic-plastic and plastic stages. As β increases, the in-plane flexural ultimate capacity and initial stiffness of joints of the same plate reinforcement type increase, but ductility of joints decreases. With the same β, the in-plane flexural initial stiffness and ultimate capacity of doubler plate reinforced joints, collar plate reinforced joints, and unreinforced joints decrease progressively. Thickness of reinforcement plate has no obvious effect on in-plane flexural initial stiffness and ultimate capacity of joints. As thickness of reinforcement plate increases, the ductility of reinforced X-joints decreases. The concave and convex deformation of every specimen has good symmetry;as β increases, the yield and ultimate deformation of chord decrease.
基金Projects(51205317,51575449) supported by the National Natural Science Foundation of ChinaProject(3102015AX004) supported by the Fundamental Research Funds for the Central Universities,ChinaProject(104-QP-2014) supported by the Research Fund of the State Key Laboratory of Solidification Processing,China
文摘Microstructural development in hot working of TA15titanium alloy with primary stripαstructure was investigated withthe aim to globularizeαstrips.Results show that the mechanisms of morphology transformation are the same to the spheroidizationmechanisms of lamellar structure.Boundary splitting and termination migration are more important than coarsening due to the largesize of stripα.Theαstrips are stable in annealing due to the unfavorable geometrical orientation of intra-αboundaries,the largethickness of strip and the geometrical stability ofαparticles.Predeformation and low speed deformation accelerate globularization ofαstrips in the following ways:direct changing of particle shape,promotion of boundary splitting and termination migration byincreasing high angle grain boundaries and interfacial area,promotion of coarsening by forming dislocation structures.Largepredeformation combined with high temperature annealing is a feasible way to globularize stripα.
文摘AIM:Many defense factors of the mother's colostrum or milk protect infants from intestinal, respiratory and systemic infections. In the present study, we investigated the effect of colostrum and mature human milk on E. histolytica parasites in vitro.METHODS:Samples of human milk were collected from 5 healthy lactating mothers.The medium with human milk at concentrations of 2%, 5% and 10% was obtained.RESULTS:The lethal effect of E. histolytica on the medium supplemented with different concentrations of both colostrum and mature human milk was significant during the first 30min. We also detected that the results of colostrum and mature human milk were similar. No statistically significant differences were found between same concentrations of colostrum and mature human milk at the same times.CONCLUSION:Colostrum and mature human milk have significant lethal effect on E. histolytica and protect against its infection in breast fed children.
基金Project(51464031)supported by the National Natural Science Foundation of China
文摘The semisolid slurry of the 6061 wrought aluminum alloy was prepared by the self-inoculation method(SIM). The effects of the isothermal holding parameters on microstructures of rheo-diecastings were investigated, and the solidification behavior of 6061 wrought aluminum alloy during the rheo-diecasting process was analyzed using OM, SEM, EDS and EBSD. The results indicate that the isothermal holding process during slurry preparation has great effect on primary α(Al) particles(α1), but has little effect on the microstructure of secondary solidification in the process of thin-walled rheo-diecasting. Nucleation is expected to take place in the entire remaining liquid when the remaining liquid fills the die cavity, and the secondary solidification particles(α2) are formed after the process of stable growth, unstable growth and merging. The solute concentration of remaining liquid is higher than that of the original alloy due to the existence of α1 particles, hence the contents of Mg and Si in α2 particles are higher than those in α1 particles.
文摘A new phenomenological and empirically-based constitutive model was proposed to modify the term in the original Johnson−Cook constitutive model.The new model can be used to describe and predict the flow stress of AA1070 aluminum with different initial grain sizes in the hot working process.This developed model considers thermal softening,strain-rate hardening,strain hardening,initial grain size,and interactions with each other and can correctly model the behavior of AA1070 at elevated temperature with different strains,strain rates,and initial grain sizes.The hot flow behavior of AA1070 was investigated through compression tests over wide ranges of temperature from 623 to 773 K,strain rate from 0.005 to 0.5 s−1 and initial grain size from 50 to 450μm.Results show that the initial grain size has a significant effect on the flow behavior of AA1070.Then,correlation coefficient(R),average absolute relative error(AARE),and relative error were examined for comparative predictability of the model.Results show that flow stresses for different initial grain sizes calculated by the new proposed model perfectly correlate with experimental ones,with a mean relative error of 1.19%,which confirms that the new modified Johnson−Cook relation can give a precise estimation of the hot flow stress of AA1070 aluminum by considering the initial grain size.
基金Project (50804023) supported by the National Natural Science Foundation of ChinaProject (205084) supported by the Key Project of Science and Technology Research of Ministry of Education of China
文摘The isothermal coarsening behavior of primary solid particles in A356 aluminum alloy semi-solid slurry produced by angular oscillation (AO) technique was investigated.The comparison between the calculation and experimental results shows good quantitative agreement with Lifshitz-Slyozov-Wagner theory.The results show that the variation in shape factor and solid fraction is not significant,the average particle size increases with increasing holding time at the expense of the particle density.Ostwald repining is most likely the predominant growth mechanism in the AO-treated semi-solid slurry during rheocasting.The differences of coarsening occurred in rheocasting and partial re-melting process were also discussed.
基金supported by the National Natural Science Foundation of China(Nos.51778290,51778386)the National Science Fund for Distinguished Young Scholars(No.51725802)the Natural Science Foundation of Jiangsu High School(No.16KJA560001)。
文摘This paper mainly investigates the effects of initial static shear stress and grain shape on the liquefaction induced large deformation of saturated sand under torsional shear.Nanjing sand,mainly composed of platy grains,is tested with different initial static shear stress ratio(SSR)using a hollow column torsional shear apparatus.The tests find that the saturated Nanjing sand reaches full liquefaction under the superposition of initial static shear stress and cyclic stress for both stress reversal and non-reversal cases.However,it requires a large number of loading cycles to reach full liquefaction if stress reversal does not occur.With increasing the initial static stress,the large deformation of the Nanjing sand should mainly induced by the cyclic liquefaction firstly under a smaller initial shear stress,and then it should be induced by the residual deformation failure.The critical point occurs approximately when the initial shear stress is close to the amplitude of the cyclic shear stress.Meanwhile,it shows that grain angularity increases the liquefaction resistance when the initial static shear stress is zero.A small initial static shear stress causes the larger loss of liquefaction resistance for angular sand than rounded sand.At a high initial SSR,the angular sand is more resistant to the large residual deformation failure than the rounded sand.
基金supported by the National Natural Science Foundation of China(Grant Nos.10932005 and 11202115)
文摘Competition of multiple Gortler modes in hypersonic boundary layer flows are investigated with the local and marching methods. The wall-layer mode (mode W) and the trapped-layer mode (mode T) both occur in the compressible boundary layer where there exists a temperature adjustment layer near the upper edge. The mode T has the largest growth rate at a lower Gortler number while the mode W dominates at larger G/Srtler numbers. These two modes are both responsible for the flow transition in the hypersonic flows especially when Gortler number is in the high value range in which the crossover of these two modes takes place. Such high Gortler numbers are virtually far beyond the neutral regime. The nonparallel base flows, therefore, cease to influence the stability behavior of the Gortler modes. The effects of the Mach number on the multiple Gortler modes are studied within a chosen Mach number of 0.95, 2, 4 and 6. When the flow Mach number is sufficiently large, e.g., Ma ≥4, the growth rate crossover of the mode T and mode W occurs both in the conventional G-β map as well as on the route downstream for a fixed wavelength disturbance. Four particular regions (Region T, T-W, W-T and W) around the crossover point are highlighted with the marching analysis and the result matches that of the local analysis. The initial disturbance of a normal mode maintains the shape in its corresponding dominating region while a shape-transformation occurs outside this region.
基金Project supported by the National Natural Science Foundation of China(No.51578472)。
文摘Under repeated train-induced loads, cement and emulsified asphalt mortar(CA mortar) as a viscoelastic material has a time-dependent deformation, part of which is irreversible. This could lead to debonding between the mortar layer and the track slab. Based on the theory of viscoelasticity and the analytical method of the time hardening law(THL), the viscoelastic deformation behavior of CA mortar was studied. Using ABAQUS, we established a solid model of China railway track system(CRTS) Ⅰ prefabricated slab track, with CA mortar at different initial Young’s moduli under cyclic loading corresponding to the influence of actual train loads. The results reveal that the fitted parameters of the THL for CA mortar are suitable for describing its viscoelastic deformation. As the initial Young’s modulus increases, the strain difference before and after cyclic loading gradually decreases, and the displacement difference increases from 0.2 mm to 0.6 mm. The deformation mainly occurs at the end of a mortar layer with longitudinal distribution of about 2.5 times the fasteners’ spacing. It follows that the viscoelastic performance of CA mortar is one of the most important reasons that cause debonding underneath the track slab. Therefore, we suggest that the adverse effects of viscoelastic behavior of CA mortar should be considered when researching such deformation and damage.