Sound propagation and the initial value problems in gas mixtures of two components are investigated. By using the eigen theory of linearized Boltzmann equations, a model equations is formed, with the use of the Fourie...Sound propagation and the initial value problems in gas mixtures of two components are investigated. By using the eigen theory of linearized Boltzmann equations, a model equations is formed, with the use of the Fourier-Laplace transform for model equations derived, the dispersion relations for both components are obtained.展开更多
Sulphuric acid activated immature Gossypium hirsutum seed(AIGHS) was prepared to biosorbe basic violet 10(BV10) from aqueous solutions.Methylene blue number,iodine number and Brunauer-Emmett-Teller surface analysis in...Sulphuric acid activated immature Gossypium hirsutum seed(AIGHS) was prepared to biosorbe basic violet 10(BV10) from aqueous solutions.Methylene blue number,iodine number and Brunauer-Emmett-Teller surface analysis indicated that the AIGHS were hetero-porous.Boehm titrations and Fourier-transform infrared spectra demonstrated the chemical heterogeneity of the AIGHS surface.Batch biosorption studies were used to examine the effects of process parameters in the following range:pH 2-12,temperature 293-313 K,contact time 1-5 h and initial concentration 200-600 mg·L^(-1).The matching of equilibrium data with the Langmuir-Freundlich form of isotherms indicated that the BV10 was adsorbed via chemisorption and pore diffusion.Kinetic investigation indicated multiple order chemisorption through an Avrami kinetic model.Film diffusion controlled the rate of BV10 biosorption onto AIGHS.The spontaneous and endothermic nature of sorption was corroborated by thermodynamic study.Continuous biosorption experiments were performed using a fixed-bed column and the influence of operating parameters was explored for different ranges of initial concentration 100-300 mg·L^(-1),bed height 5-10 cm,and flow rate 2.5-4.5 ml·min^(-1).A dose response model accurately described the fixed-bed biosorption data.An external mass transfer correlation was formulated explaining BV10-AIGHS sorption.展开更多
Competition of multiple Gortler modes in hypersonic boundary layer flows are investigated with the local and marching methods. The wall-layer mode (mode W) and the trapped-layer mode (mode T) both occur in the com...Competition of multiple Gortler modes in hypersonic boundary layer flows are investigated with the local and marching methods. The wall-layer mode (mode W) and the trapped-layer mode (mode T) both occur in the compressible boundary layer where there exists a temperature adjustment layer near the upper edge. The mode T has the largest growth rate at a lower Gortler number while the mode W dominates at larger G/Srtler numbers. These two modes are both responsible for the flow transition in the hypersonic flows especially when Gortler number is in the high value range in which the crossover of these two modes takes place. Such high Gortler numbers are virtually far beyond the neutral regime. The nonparallel base flows, therefore, cease to influence the stability behavior of the Gortler modes. The effects of the Mach number on the multiple Gortler modes are studied within a chosen Mach number of 0.95, 2, 4 and 6. When the flow Mach number is sufficiently large, e.g., Ma ≥4, the growth rate crossover of the mode T and mode W occurs both in the conventional G-β map as well as on the route downstream for a fixed wavelength disturbance. Four particular regions (Region T, T-W, W-T and W) around the crossover point are highlighted with the marching analysis and the result matches that of the local analysis. The initial disturbance of a normal mode maintains the shape in its corresponding dominating region while a shape-transformation occurs outside this region.展开更多
基金Supported by National Natural Science Foundation of China under Grant No.10861008the "211 Project" Innovative Talents Training Program of Inner Mongolia University and Grant-in-Aid for Scientific Research from Inner Mongolia University of Technology under Grant No.ZS201032
文摘Sound propagation and the initial value problems in gas mixtures of two components are investigated. By using the eigen theory of linearized Boltzmann equations, a model equations is formed, with the use of the Fourier-Laplace transform for model equations derived, the dispersion relations for both components are obtained.
文摘Sulphuric acid activated immature Gossypium hirsutum seed(AIGHS) was prepared to biosorbe basic violet 10(BV10) from aqueous solutions.Methylene blue number,iodine number and Brunauer-Emmett-Teller surface analysis indicated that the AIGHS were hetero-porous.Boehm titrations and Fourier-transform infrared spectra demonstrated the chemical heterogeneity of the AIGHS surface.Batch biosorption studies were used to examine the effects of process parameters in the following range:pH 2-12,temperature 293-313 K,contact time 1-5 h and initial concentration 200-600 mg·L^(-1).The matching of equilibrium data with the Langmuir-Freundlich form of isotherms indicated that the BV10 was adsorbed via chemisorption and pore diffusion.Kinetic investigation indicated multiple order chemisorption through an Avrami kinetic model.Film diffusion controlled the rate of BV10 biosorption onto AIGHS.The spontaneous and endothermic nature of sorption was corroborated by thermodynamic study.Continuous biosorption experiments were performed using a fixed-bed column and the influence of operating parameters was explored for different ranges of initial concentration 100-300 mg·L^(-1),bed height 5-10 cm,and flow rate 2.5-4.5 ml·min^(-1).A dose response model accurately described the fixed-bed biosorption data.An external mass transfer correlation was formulated explaining BV10-AIGHS sorption.
基金supported by the National Natural Science Foundation of China(Grant Nos.10932005 and 11202115)
文摘Competition of multiple Gortler modes in hypersonic boundary layer flows are investigated with the local and marching methods. The wall-layer mode (mode W) and the trapped-layer mode (mode T) both occur in the compressible boundary layer where there exists a temperature adjustment layer near the upper edge. The mode T has the largest growth rate at a lower Gortler number while the mode W dominates at larger G/Srtler numbers. These two modes are both responsible for the flow transition in the hypersonic flows especially when Gortler number is in the high value range in which the crossover of these two modes takes place. Such high Gortler numbers are virtually far beyond the neutral regime. The nonparallel base flows, therefore, cease to influence the stability behavior of the Gortler modes. The effects of the Mach number on the multiple Gortler modes are studied within a chosen Mach number of 0.95, 2, 4 and 6. When the flow Mach number is sufficiently large, e.g., Ma ≥4, the growth rate crossover of the mode T and mode W occurs both in the conventional G-β map as well as on the route downstream for a fixed wavelength disturbance. Four particular regions (Region T, T-W, W-T and W) around the crossover point are highlighted with the marching analysis and the result matches that of the local analysis. The initial disturbance of a normal mode maintains the shape in its corresponding dominating region while a shape-transformation occurs outside this region.