A study was carried out to examine the possibility for Aspergillus niger strain KBS4 to bioleach metals from sulphide ore with low concentration of arsenic and to optimize the parameters that affect this process by or...A study was carried out to examine the possibility for Aspergillus niger strain KBS4 to bioleach metals from sulphide ore with low concentration of arsenic and to optimize the parameters that affect this process by orthogonal array optimization. Fungal sample was collected, purified and sequenced. The bioleaching process was optimized with L25 Taguchi orthogonal experimental array design. Five factors were investigated and 25 batch bioleaching tests were run at five levels for each factor. The parameters were initial pH, particle size, pulp density, initial inoculums and residence time for bioleaching. The experimental results showed that under optimized leaching conditions: pH 5.5, particle size 180 μm, initial inoculums size 3×10 7 spores per ml, pulp density 15% and residence time of 20 days, the bioleach ability of metals were 63% Fe, 68% Zn, 60% As, 79% Cu and 54% Al. The biosorption of metal ions by fungal biomass might occur during the bioleaching process but it did not hinder the removal of metal ions by bioleaching.展开更多
基金Supported by the Program for Changjiang Scholars and Innovative Research Team in University, China (IRT0974)the Higher Education Commission of Pakistan (20-652/R&D/05-43622)
文摘A study was carried out to examine the possibility for Aspergillus niger strain KBS4 to bioleach metals from sulphide ore with low concentration of arsenic and to optimize the parameters that affect this process by orthogonal array optimization. Fungal sample was collected, purified and sequenced. The bioleaching process was optimized with L25 Taguchi orthogonal experimental array design. Five factors were investigated and 25 batch bioleaching tests were run at five levels for each factor. The parameters were initial pH, particle size, pulp density, initial inoculums and residence time for bioleaching. The experimental results showed that under optimized leaching conditions: pH 5.5, particle size 180 μm, initial inoculums size 3×10 7 spores per ml, pulp density 15% and residence time of 20 days, the bioleach ability of metals were 63% Fe, 68% Zn, 60% As, 79% Cu and 54% Al. The biosorption of metal ions by fungal biomass might occur during the bioleaching process but it did not hinder the removal of metal ions by bioleaching.