The potential role of formal structural optimization was investigated for designing foldable and deployable structures in this work.Shape-sizing nested optimization is a challenging design problem.Shape,represented by...The potential role of formal structural optimization was investigated for designing foldable and deployable structures in this work.Shape-sizing nested optimization is a challenging design problem.Shape,represented by the lengths and relative angles of elements,is critical to achieving smooth deployment to a desired span,while the section profiles of each element must satisfy structural dynamic performances in each deploying state.Dynamic characteristics of deployable structures in the initial state,the final state and also the middle deploying states are all crucial to the structural dynamic performances.The shape was represented by the nodal coordinates and the profiles of cross sections were represented by the diameters and thicknesses.SQP(sequential quadratic programming) method was used to explore the design space and identify the minimum mass solutions that satisfy kinematic and structural dynamic constraints.The optimization model and methodology were tested on the case-study of a deployable pantograph.This strategy can be easily extended to design a wide range of deployable structures,including deployable antenna structures,foldable solar sails,expandable bridges and retractable gymnasium roofs.展开更多
In this paper,we study two-dimensional Riemann boundary value problems of Euler system for the isentropic and irrotational Chaplygin gas with initial data being two constant states given in two sectors respectively,wh...In this paper,we study two-dimensional Riemann boundary value problems of Euler system for the isentropic and irrotational Chaplygin gas with initial data being two constant states given in two sectors respectively,where one sector is a quadrant and the other one has an acute vertex angle.We prove that the Riemann boundary value problem admits a global self-similar solution,if either the initial states are close,or the smaller sector is also near a quadrant.Our result can be applied to solving the problem of shock reflection by a ramp.展开更多
In this paper, we study a kind of nonlinear model of adiabatic evolution in quantum search problem. As will be seen here, for this problem, there always exists a possibility that this nonlinear model can successfully ...In this paper, we study a kind of nonlinear model of adiabatic evolution in quantum search problem. As will be seen here, for this problem, there always exists a possibility that this nonlinear model can successfully solve the problem, while the linear model can not. Also in the same setting, when the overlap between the initial state and the final stare is sufficiently large, a simple linear adiabatic evolution can achieve O(1) time efficiency, but infinite time complexity for the nonlinear model of adiabatic evolution is needed. This tells us, it is not always a wise choice to use nonlinear interpolations in adiabatic algorithms. Sometimes, simple linear adiabatic evolutions may be sufficient for using.展开更多
基金Project(030103) supported by the Weaponry Equipment Pre-Research Key Foundation of ChinaProject(69982009) supported by the National Natural Science Foundation of China
文摘The potential role of formal structural optimization was investigated for designing foldable and deployable structures in this work.Shape-sizing nested optimization is a challenging design problem.Shape,represented by the lengths and relative angles of elements,is critical to achieving smooth deployment to a desired span,while the section profiles of each element must satisfy structural dynamic performances in each deploying state.Dynamic characteristics of deployable structures in the initial state,the final state and also the middle deploying states are all crucial to the structural dynamic performances.The shape was represented by the nodal coordinates and the profiles of cross sections were represented by the diameters and thicknesses.SQP(sequential quadratic programming) method was used to explore the design space and identify the minimum mass solutions that satisfy kinematic and structural dynamic constraints.The optimization model and methodology were tested on the case-study of a deployable pantograph.This strategy can be easily extended to design a wide range of deployable structures,including deployable antenna structures,foldable solar sails,expandable bridges and retractable gymnasium roofs.
基金supported in part by National Natural Science Foundation of China(Grant No. 11031001)the Doctorial Foundation of National Educational Ministry (Grant No. 20090071110002)Tianyuan Fund of Mathematics (Grant No. 11126181)
文摘In this paper,we study two-dimensional Riemann boundary value problems of Euler system for the isentropic and irrotational Chaplygin gas with initial data being two constant states given in two sectors respectively,where one sector is a quadrant and the other one has an acute vertex angle.We prove that the Riemann boundary value problem admits a global self-similar solution,if either the initial states are close,or the smaller sector is also near a quadrant.Our result can be applied to solving the problem of shock reflection by a ramp.
基金Supported by the National Natural Science Foundation of China under Grant Nos.61402188 and 61173050the support from the China Postdoctoral Science Foundation under Grant No.2014M552041
文摘In this paper, we study a kind of nonlinear model of adiabatic evolution in quantum search problem. As will be seen here, for this problem, there always exists a possibility that this nonlinear model can successfully solve the problem, while the linear model can not. Also in the same setting, when the overlap between the initial state and the final stare is sufficiently large, a simple linear adiabatic evolution can achieve O(1) time efficiency, but infinite time complexity for the nonlinear model of adiabatic evolution is needed. This tells us, it is not always a wise choice to use nonlinear interpolations in adiabatic algorithms. Sometimes, simple linear adiabatic evolutions may be sufficient for using.