The microstructural features of hypoeutectic AI-10%Si alloy were observed using optical microscopy and electron backscatter diffraction. The results show that primary silicon particles are frequently found in hypoeute...The microstructural features of hypoeutectic AI-10%Si alloy were observed using optical microscopy and electron backscatter diffraction. The results show that primary silicon particles are frequently found in hypoeutectic alloys. Hence, the nucleation and growth mechanisms of the precipitation of primary silicon of hypoeutectic Al-10%Si alloy melts were investigated. It was discovered that Si atoms are easy to segregate and form Si-Si clusters, which results in the formation of primary silicon even in eutectic or hypoeutectic Al-Si alloys. In addition, solute redistribution caused by chemical driving force and large pile-ups or micro-segregation of the solute play an important role in the formation of the primary silicon, and the solute redistribution equations were derived from Jackson-Chalmers equations. Once Si solute concentration exceeds eutectic composition, primary silicon precipitates are formed at the front of solid/liquid interface.展开更多
Hypereutectic Al-Si alloy with variant Mg contents were fabricated by casting,and the effects of Mg content on the microstructure of primary Mg2Si particles in hypereutectic Al-Si alloys were investigated.The results ...Hypereutectic Al-Si alloy with variant Mg contents were fabricated by casting,and the effects of Mg content on the microstructure of primary Mg2Si particles in hypereutectic Al-Si alloys were investigated.The results show that the volume fraction of primary Mg2Si particles increases linearly with raising the Mg content,but the average size of Mg2Si particles does not exhibit a corresponding change.When the Mg content is 3%,á1 0 0? directions have the fastest growth velocity,so that Mg2Si particles are likely to form octahedron shape.When gradually increasing the Mg content,the distributions of Mg and Si atoms on the solid-liquid interface become inhomogeneous,which results in the formation of irregular octahedron structures.Finally,when the Mg content is about 10%,the morphology of primary Mg2Si particles changes from the octahedron shape into various complex structures with a large size.展开更多
Estuarial saline wetlands have been recognized as a vital role in CO_2 cycling.However,insufficient attention has been paid to estimating CO_2 fluxes from estuarial saline wetlands.In this study,the static chamber-gas...Estuarial saline wetlands have been recognized as a vital role in CO_2 cycling.However,insufficient attention has been paid to estimating CO_2 fluxes from estuarial saline wetlands.In this study,the static chamber-gas chromatography(GC) method was used to quantify CO_2 budget of an estuarial saline reed(Phragmites australis) wetland in Jiaozhou Bay in Qingdao City of Shandong Province,China during the reed growing season(May to October) in 2014.The CO_2 budget study involved net ecosystem CO_2 exchange(NEE),ecosystem respiration(Reco) and gross primary production(GPP).Temporal variation in CO_2 budget and the impact of air/soil temperature,illumination intensity and aboveground biomass exerted on CO_2 budget were analyzed.Results indicated that the wetland was acting as a net sink of 1129.16 g/m^2 during the entire growing season.Moreover,the values of Reco and GPP were 1744.89 g/m^2 and 2874.05 g/m^2,respectively;the ratio of Reco and GPP was 0.61.Diurnal and monthly patterns of CO_2 budget varied significantly during the study period.Reco showed exponential relationships with air temperature and soil temperature at 5 cm,10 cm,20 cm depths,and soil temperature at 5 cm depth was the most crucial influence factor among them.Meanwhile,temperature sensitivity(Q10) of Reco was negatively correlated with soil temperature.Light and temperature exerted strong controls over NEE and GPP.Aboveground biomass over the whole growing season showed non-linear relationships with CO_2 budget,while those during the early and peak growing season showed significant linear relationships with CO_2 budget.This research provides valuable reference for CO_2 exchange in estuarial saline wetland ecosystem.展开更多
Precipitation(PPT)changes affect both aboveground vegetation dynamics and belowground carbon cycling processes,particularly in arid and semiarid regions.However,it remains unclear how extreme PPT variation can affect ...Precipitation(PPT)changes affect both aboveground vegetation dynamics and belowground carbon cycling processes,particularly in arid and semiarid regions.However,it remains unclear how extreme PPT variation can affect soil carbon sequestration potential.A 3-year PPT manipulation experiment with five levels(±40%,±20%and ambient PPT)was conducted in a desert grassland of western Loess Plateau.Aboveground net primary productivity(ANPP)and soil respiration(Rs)were measured to examine whether the responses of ANPP and Rs to PPT changes displayed a double asymmetry model.The ANPP was more sensitive to extreme drought than extreme wet treatments in wet and dry years,which displayed a negative asymmetric model.The change in ANPP was mainly due to the direct effect of PPT change,and plant density variation also exerted some influence in the dry year.In contrast,Rs displayed a positive asymmetry response to PPT change in dry year.This may be ascribed to enhanced autotrophic respiration due to the enhanced positive responses of plant growth and ANPP to wet treatments as well as stronger birch effect of rainfall events on heterotrophic respiration.The saturating response of Rs to extreme drought(−40%PPT treatment)was also found in the dry year.Nevertheless,the response of Rs to PPT change displayed a negative asymmetry model in wet years.The contrasting models for ANPP and Rs in response to altered PPT regime suggest that extreme wet or dry treatments may increase soil C pools effluxes toward debt in this desert grassland.展开更多
基金Project (U1134101) supported by the Mutual Foundation of Basic Research of High Speed Railway,ChinaProjects (ZR2009FL003,ZR2010EL011,ZR2011EMM003) supported by the Natural Science Foundation of Shandong Province,China
文摘The microstructural features of hypoeutectic AI-10%Si alloy were observed using optical microscopy and electron backscatter diffraction. The results show that primary silicon particles are frequently found in hypoeutectic alloys. Hence, the nucleation and growth mechanisms of the precipitation of primary silicon of hypoeutectic Al-10%Si alloy melts were investigated. It was discovered that Si atoms are easy to segregate and form Si-Si clusters, which results in the formation of primary silicon even in eutectic or hypoeutectic Al-Si alloys. In addition, solute redistribution caused by chemical driving force and large pile-ups or micro-segregation of the solute play an important role in the formation of the primary silicon, and the solute redistribution equations were derived from Jackson-Chalmers equations. Once Si solute concentration exceeds eutectic composition, primary silicon precipitates are formed at the front of solid/liquid interface.
基金Project(CDJZR12240056)supported by the Fundamental Research Funds for Central Universities,ChinaProject(cstc2013jcyj A50014)supported by the Foundational and Cutting-edge Research Plan of Chongqing,China
文摘Hypereutectic Al-Si alloy with variant Mg contents were fabricated by casting,and the effects of Mg content on the microstructure of primary Mg2Si particles in hypereutectic Al-Si alloys were investigated.The results show that the volume fraction of primary Mg2Si particles increases linearly with raising the Mg content,but the average size of Mg2Si particles does not exhibit a corresponding change.When the Mg content is 3%,á1 0 0? directions have the fastest growth velocity,so that Mg2Si particles are likely to form octahedron shape.When gradually increasing the Mg content,the distributions of Mg and Si atoms on the solid-liquid interface become inhomogeneous,which results in the formation of irregular octahedron structures.Finally,when the Mg content is about 10%,the morphology of primary Mg2Si particles changes from the octahedron shape into various complex structures with a large size.
基金Under the auspices of National Natural Science Foundation of China(No.41101080)Shandong Natural Science Foundation of China(No.ZR2014DQ028,ZR2015DM004)
文摘Estuarial saline wetlands have been recognized as a vital role in CO_2 cycling.However,insufficient attention has been paid to estimating CO_2 fluxes from estuarial saline wetlands.In this study,the static chamber-gas chromatography(GC) method was used to quantify CO_2 budget of an estuarial saline reed(Phragmites australis) wetland in Jiaozhou Bay in Qingdao City of Shandong Province,China during the reed growing season(May to October) in 2014.The CO_2 budget study involved net ecosystem CO_2 exchange(NEE),ecosystem respiration(Reco) and gross primary production(GPP).Temporal variation in CO_2 budget and the impact of air/soil temperature,illumination intensity and aboveground biomass exerted on CO_2 budget were analyzed.Results indicated that the wetland was acting as a net sink of 1129.16 g/m^2 during the entire growing season.Moreover,the values of Reco and GPP were 1744.89 g/m^2 and 2874.05 g/m^2,respectively;the ratio of Reco and GPP was 0.61.Diurnal and monthly patterns of CO_2 budget varied significantly during the study period.Reco showed exponential relationships with air temperature and soil temperature at 5 cm,10 cm,20 cm depths,and soil temperature at 5 cm depth was the most crucial influence factor among them.Meanwhile,temperature sensitivity(Q10) of Reco was negatively correlated with soil temperature.Light and temperature exerted strong controls over NEE and GPP.Aboveground biomass over the whole growing season showed non-linear relationships with CO_2 budget,while those during the early and peak growing season showed significant linear relationships with CO_2 budget.This research provides valuable reference for CO_2 exchange in estuarial saline wetland ecosystem.
基金supported by the National Natural Science Foundation of China(41761043,41201196,41261047)the Youth Teacher Scientific Capability Promoting Project of Northwest Normal University(NWNU-LKQN2020-06,NWNU-LKQN-17-7)the Key Research and Development Program of Gansu Province(20YF3FA042).
文摘Precipitation(PPT)changes affect both aboveground vegetation dynamics and belowground carbon cycling processes,particularly in arid and semiarid regions.However,it remains unclear how extreme PPT variation can affect soil carbon sequestration potential.A 3-year PPT manipulation experiment with five levels(±40%,±20%and ambient PPT)was conducted in a desert grassland of western Loess Plateau.Aboveground net primary productivity(ANPP)and soil respiration(Rs)were measured to examine whether the responses of ANPP and Rs to PPT changes displayed a double asymmetry model.The ANPP was more sensitive to extreme drought than extreme wet treatments in wet and dry years,which displayed a negative asymmetric model.The change in ANPP was mainly due to the direct effect of PPT change,and plant density variation also exerted some influence in the dry year.In contrast,Rs displayed a positive asymmetry response to PPT change in dry year.This may be ascribed to enhanced autotrophic respiration due to the enhanced positive responses of plant growth and ANPP to wet treatments as well as stronger birch effect of rainfall events on heterotrophic respiration.The saturating response of Rs to extreme drought(−40%PPT treatment)was also found in the dry year.Nevertheless,the response of Rs to PPT change displayed a negative asymmetry model in wet years.The contrasting models for ANPP and Rs in response to altered PPT regime suggest that extreme wet or dry treatments may increase soil C pools effluxes toward debt in this desert grassland.