A semi-analytical method in time domain is presented for analysis of the transient response of nonuniform transmission lines. In this method, the telegraph equations in time domain is differenced in space domain first...A semi-analytical method in time domain is presented for analysis of the transient response of nonuniform transmission lines. In this method, the telegraph equations in time domain is differenced in space domain first, and is transformed into a set of first-order differential equations of voltage and current with respect to time. By integrating these differential equations with respect to time, and precise computation, the solution of these differential equations can be obtained. This method can solve the transient response of various kinds of transmission lines with arbitrary terminal networks. Particularly, it can analyze the nonuniform lines with initial conditions, for which there is no existing effective method to analyze the time response so far. The results obtained with this method are stable and accurate. Two examples are given to illustrate the application of this method.展开更多
To study the influence of original defects on the dynamic stability of the columns under periodic transient loadings,the approximate solution method and the Fourier method of the stable periodic solution are adopted w...To study the influence of original defects on the dynamic stability of the columns under periodic transient loadings,the approximate solution method and the Fourier method of the stable periodic solution are adopted while considering the influence of original defects on columns.The dynamic stability of the columns under periodic transient loadings is analyzed theoretically.Through the study of different deflections,the dynamic instability of the columns is obtained by Maple software.The results of theoretical analysis show that the larger the original defects,the greater the unstable area,the stable solution amplitude of columns and the risk of instability caused by parametric resonance will be.The damping of columns is a vital factor in reducing dynamic instability at the same original defects.On the basis of the Mathieu-Hill equation,the relationship between the original defects and deflection is deduced,and the dynamic instability region of the columns under different original defects is obtained.Therefore,reducing the original defects of columns can further enhance the dynamic stability of the compressed columns in practical engineering.展开更多
文摘A semi-analytical method in time domain is presented for analysis of the transient response of nonuniform transmission lines. In this method, the telegraph equations in time domain is differenced in space domain first, and is transformed into a set of first-order differential equations of voltage and current with respect to time. By integrating these differential equations with respect to time, and precise computation, the solution of these differential equations can be obtained. This method can solve the transient response of various kinds of transmission lines with arbitrary terminal networks. Particularly, it can analyze the nonuniform lines with initial conditions, for which there is no existing effective method to analyze the time response so far. The results obtained with this method are stable and accurate. Two examples are given to illustrate the application of this method.
基金The National Natural Science Foundation of Chin(No.51078354)
文摘To study the influence of original defects on the dynamic stability of the columns under periodic transient loadings,the approximate solution method and the Fourier method of the stable periodic solution are adopted while considering the influence of original defects on columns.The dynamic stability of the columns under periodic transient loadings is analyzed theoretically.Through the study of different deflections,the dynamic instability of the columns is obtained by Maple software.The results of theoretical analysis show that the larger the original defects,the greater the unstable area,the stable solution amplitude of columns and the risk of instability caused by parametric resonance will be.The damping of columns is a vital factor in reducing dynamic instability at the same original defects.On the basis of the Mathieu-Hill equation,the relationship between the original defects and deflection is deduced,and the dynamic instability region of the columns under different original defects is obtained.Therefore,reducing the original defects of columns can further enhance the dynamic stability of the compressed columns in practical engineering.