使用医疗信息系统的数据进行睡眠呼吸暂停低通气综合征(OSAHS)预测和分析过程中,存在不平衡数据问题。为此,在现有临床研究的基础上,提出了一种基于ROSE(Random Over Sampling Examples)和C5.0算法的初筛模型。利用收集到的人体测量学...使用医疗信息系统的数据进行睡眠呼吸暂停低通气综合征(OSAHS)预测和分析过程中,存在不平衡数据问题。为此,在现有临床研究的基础上,提出了一种基于ROSE(Random Over Sampling Examples)和C5.0算法的初筛模型。利用收集到的人体测量学指标数据,通过数据预处理,删除异常值并填补缺失值。然后采用ROSE算法对数据进行平衡,利用C5.0分类器对平衡后的数据构建筛查模型,通过十则交叉验证的方法检验模型的筛查效果。实验结果表明,使用该模型进行打鼾患者的OSAHS筛查,可以有效地提高筛查效率。展开更多
文摘使用医疗信息系统的数据进行睡眠呼吸暂停低通气综合征(OSAHS)预测和分析过程中,存在不平衡数据问题。为此,在现有临床研究的基础上,提出了一种基于ROSE(Random Over Sampling Examples)和C5.0算法的初筛模型。利用收集到的人体测量学指标数据,通过数据预处理,删除异常值并填补缺失值。然后采用ROSE算法对数据进行平衡,利用C5.0分类器对平衡后的数据构建筛查模型,通过十则交叉验证的方法检验模型的筛查效果。实验结果表明,使用该模型进行打鼾患者的OSAHS筛查,可以有效地提高筛查效率。