期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
删失混合效应模型的分位回归及变量选择
1
作者 田玉柱 李二倩 +1 位作者 田茂再 罗幼喜 《数学学报(中文版)》 CSCD 北大核心 2017年第2期315-334,共20页
纵向数据常常用正态混合效应模型进行分析.然而,违背正态性的假定往往会导致无效的推断.与传统的均值回归相比较,分位回归可以给出响应变量条件分布的完整刻画,对于非正态误差分布也可以给稳健的估计结果.本文主要考虑右删失响应下纵向... 纵向数据常常用正态混合效应模型进行分析.然而,违背正态性的假定往往会导致无效的推断.与传统的均值回归相比较,分位回归可以给出响应变量条件分布的完整刻画,对于非正态误差分布也可以给稳健的估计结果.本文主要考虑右删失响应下纵向混合效应模型的分位回归估计和变量选择问题.首先,逆删失概率加权方法被用来得到模型的参数估计.其次,结合逆删失概率加权和LASSO惩罚变量选择方法考虑了模型的变量选择问题.蒙特卡洛模拟显示所提方法要比直接删除删失数据的估计方法更具优势.最后,分析了一组艾滋病数据集来展示所提方法的实际应用效果. 展开更多
关键词 分位回归 删失混合效应模型 概率加权方法 变量选择 LASSO惩罚
原文传递
左删失数据的双惩罚贝叶斯Tobit分位回归方法 被引量:2
2
作者 舒婷 罗幼喜 +1 位作者 胡超竹 李翰芳 《统计与决策》 CSSCI 北大核心 2023年第5期27-33,共7页
在含潜变量的纵向数据混合效应模型应用中,通常包含大量截尾数据,若直接采用一般贝叶斯Tobit分位回归模型,参数估计的马尔科夫链蒙特卡罗抽样算法将会极其复杂,造成计算效率低下且估计结果偏差较大。同时,在高维情形下,由于受大量未知... 在含潜变量的纵向数据混合效应模型应用中,通常包含大量截尾数据,若直接采用一般贝叶斯Tobit分位回归模型,参数估计的马尔科夫链蒙特卡罗抽样算法将会极其复杂,造成计算效率低下且估计结果偏差较大。同时,在高维情形下,由于受大量未知随机效应的干扰,固定效应中关键变量的选择与系数估计变得更为困难。为了解决上述问题,文章提出了一种新的双Adaptive Lasso惩罚贝叶斯Tobit分位回归方法,主要研究响应变量左删失情形下高维纵向数据的变量选择与参数估计问题。通过将Adaptive Lasso惩罚同时引入固定效应与随机效应的先验分布中,构造了参数估计的Gibbs抽样算法。蒙特卡罗模拟结果表明,新方法较无惩罚法和Lasso惩罚法在重要变量选择及系数估计上均更占优势。 展开更多
关键词 删失混合效应模型 Adaptive Lasso惩罚 Tobit分位回归 Gibbs抽样算法 贝叶斯方法
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部