期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
我国高校教师职称晋升影响因素的事件史分析 被引量:8
1
作者 岳英 《教育发展研究》 CSSCI 北大核心 2020年第13期90-97,共8页
本研究将事件史分析方法引入到我国高校教师职称晋升概率及其影响因素的研究之中,有效地弥补了已有研究中对时变变量和删截数据等考虑不足的问题。基于自建数据库中2371条人-年记录数据的分析发现,教师由讲师晋升为副教授所需要时间的... 本研究将事件史分析方法引入到我国高校教师职称晋升概率及其影响因素的研究之中,有效地弥补了已有研究中对时变变量和删截数据等考虑不足的问题。基于自建数据库中2371条人-年记录数据的分析发现,教师由讲师晋升为副教授所需要时间的平均值为5.5年,且在性别、学科(数学、历史和教育学科)维度上存在显著差异;教师由副教授至教授所需要时间的平均值为7.0年,但在性别和学科维度上无显著差别;在控制了其他变量的情况下,教师由讲师晋升至副教授的概率方面,年资和科研成果的数量是重要的预测因子,而在副教授升至教授的概率上,除了年资外,科研成果的被引或者说科研成果的质量是显著的影响因素。但无论是在副教授群体还是正教授群体晋升过程中,年资对高校教师职称晋升机会的作用最大,即晋升事件开始得越早,晋升的概率也就越大。 展开更多
关键词 高校教师 职称晋升 事件史分析 时变变量 删截数据 年资
原文传递
Quantile residual lifetime for left-truncated and right-censored data 被引量:8
2
作者 WANG YiXin LIU Peng ZHOU Yong 《Science China Mathematics》 SCIE CSCD 2015年第6期1217-1234,共18页
This article proposes a simple nonparametric estimator of quantile residual lifetime function under left-truncated and right-censored data. The asymptotic consistency and normality of this estimator are proved and the... This article proposes a simple nonparametric estimator of quantile residual lifetime function under left-truncated and right-censored data. The asymptotic consistency and normality of this estimator are proved and the variance expression is calculated. Two bootstrap procedures are employed in the simulation study,where the latter bootstrap from Zeng and Lin(2008) is 4000 times faster than the former naive one, and the numerical results in both methods show that our estimating approach works well. A real data example is used to illustrate its application. 展开更多
关键词 truncated lifetime estimator consistency latter faster nonparametric naive bootstrap estimating
原文传递
Conditional Quantile Estimation with Truncated,Censored and Dependent Data
3
作者 Hanying LIANG Deli LI Tianxuan MIAO 《Chinese Annals of Mathematics,Series B》 SCIE CSCD 2015年第6期969-990,共22页
This paper deals with the conditional quantile estimation based on left-truncated and right-censored data.Assuming that the observations with multivariate covariates form a stationary α-mixing sequence,the authors de... This paper deals with the conditional quantile estimation based on left-truncated and right-censored data.Assuming that the observations with multivariate covariates form a stationary α-mixing sequence,the authors derive the strong convergence with rate,strong representation as well as asymptotic normality of the conditional quantile estimator.Also,a Berry-Esseen-type bound for the estimator is established.In addition,the finite sample behavior of the estimator is investigated via simulations. 展开更多
关键词 Berry-Esseen-type bound Conditional quantile estimator Strong rep-resentation Truncated and censored data Α-MIXING
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部