This article proposes a simple nonparametric estimator of quantile residual lifetime function under left-truncated and right-censored data. The asymptotic consistency and normality of this estimator are proved and the...This article proposes a simple nonparametric estimator of quantile residual lifetime function under left-truncated and right-censored data. The asymptotic consistency and normality of this estimator are proved and the variance expression is calculated. Two bootstrap procedures are employed in the simulation study,where the latter bootstrap from Zeng and Lin(2008) is 4000 times faster than the former naive one, and the numerical results in both methods show that our estimating approach works well. A real data example is used to illustrate its application.展开更多
This paper deals with the conditional quantile estimation based on left-truncated and right-censored data.Assuming that the observations with multivariate covariates form a stationary α-mixing sequence,the authors de...This paper deals with the conditional quantile estimation based on left-truncated and right-censored data.Assuming that the observations with multivariate covariates form a stationary α-mixing sequence,the authors derive the strong convergence with rate,strong representation as well as asymptotic normality of the conditional quantile estimator.Also,a Berry-Esseen-type bound for the estimator is established.In addition,the finite sample behavior of the estimator is investigated via simulations.展开更多
基金supported by National Natural Science Foundation of China(Grant No.71271128)the State Key Program of National Natural Science Foundation of China(Grant No.71331006)+2 种基金NCMIS and Shanghai University of Finance and Economics through Project 211 Phase IVShanghai Firstclass Discipline A,Outstanding Ph D Dissertation Cultivation Funds of Shanghai University of Finance and EconomicsGraduate Education Innovation Funds of Shanghai University of Finance and Economics(Grant No.CXJJ-2011-438)
文摘This article proposes a simple nonparametric estimator of quantile residual lifetime function under left-truncated and right-censored data. The asymptotic consistency and normality of this estimator are proved and the variance expression is calculated. Two bootstrap procedures are employed in the simulation study,where the latter bootstrap from Zeng and Lin(2008) is 4000 times faster than the former naive one, and the numerical results in both methods show that our estimating approach works well. A real data example is used to illustrate its application.
基金supported by the National Natural Science Foundation of China(No.11271286)the Specialized Research Fund for the Doctor Program of Higher Education of China(No.20120072110007)a grant from the Natural Sciences and Engineering Research Council of Canada
文摘This paper deals with the conditional quantile estimation based on left-truncated and right-censored data.Assuming that the observations with multivariate covariates form a stationary α-mixing sequence,the authors derive the strong convergence with rate,strong representation as well as asymptotic normality of the conditional quantile estimator.Also,a Berry-Esseen-type bound for the estimator is established.In addition,the finite sample behavior of the estimator is investigated via simulations.