为解决常规的递归最小二乘(recursive least squares,RLS)算法难以适应快变的水声信道,及未对水声信道的稀疏性加以利用导致均衡性能下降的问题,本文提出一种结合信道短化技术和基于l1范数宽线性变遗忘因子RLS自适应均衡技术判决反馈(de...为解决常规的递归最小二乘(recursive least squares,RLS)算法难以适应快变的水声信道,及未对水声信道的稀疏性加以利用导致均衡性能下降的问题,本文提出一种结合信道短化技术和基于l1范数宽线性变遗忘因子RLS自适应均衡技术判决反馈(decision feedback equalizer,DFE)接收机算法。试验结果表明:该接收机算法具有较低的计算复杂度,在稳态MSE和SER方面也具有较大的性能提升。展开更多
研究了水声图像高速传输信号处理方法,它包括两个方面,一方面是水声相干通信信号处理方法,其中:(1)多普勒频移补偿,在数据包的前后两端插入已知线性调频(Chirp)信号,拷贝相关后求互相关,估计相对多普勒平均频移。在自适应判决反馈均衡...研究了水声图像高速传输信号处理方法,它包括两个方面,一方面是水声相干通信信号处理方法,其中:(1)多普勒频移补偿,在数据包的前后两端插入已知线性调频(Chirp)信号,拷贝相关后求互相关,估计相对多普勒平均频移。在自适应判决反馈均衡器中加上自适应相位补偿器,采用快速自优化最小均方(LMS)算法,与其对应的速度容限优于常用的二阶锁相环相位补偿器的。两种补偿方法联合工作时,性能优良。(2)带有分集合并器的自适应判决反馈均衡器的算法是快速自优化的LMS算法,计算量小,性能优良。(3)自适应判决反馈均衡器与Turbo-网格编码调制(TCM)译码器级连、迭代算法。研究了基于软输出维特比(SOVA)方法的新型的比特-符号转换器,用它时误比特率(BER)比常规编码、映射方法的近似小2个数量级。另一方面是抗误码的图像压缩方法。本文基于数字小波变换和定长编码方法,研究了声图像的压缩。它包括:(1)选用CDF9/7小波进行小波变换。(2)对小波系数子带能量进行统计分析,三层小波分解是合适的。(3)对不同能量的子带采用不同的量化步长。(4)采用定长编码算法。结果表明声图像压缩比特率为0.85。当BER小于10^(-3)时,图像质量完好。当BER小于10^(-2)时,图像中出现少量小黑白点。在上述基础上研制了水声通信机,频带为(7.5~12.5)kHz,接收声呐阵为8基元等距线阵,信号为QPSK和8PSK。在中国千岛湖进行了湖试,采用SOVA硬迭代算法,达到了低BER。传输一幅256×256×8的声图需时约7s。传输距离与传输速率之积为55 km kbps。展开更多
Underwater acoustic channels pose a great difficulty for the development of high speed communication due to highly limited band-width as well as hostile multipath interference. Enlightened by rapid progress of multipl...Underwater acoustic channels pose a great difficulty for the development of high speed communication due to highly limited band-width as well as hostile multipath interference. Enlightened by rapid progress of multiple-input multiple-output (MIMO) technologies in wireless communication scenarios, MIMO systems offer a potential solution by enabling multiple spatially parallel communication channels to improve communication performance as well as capacity. For MIMO acoustic communications, deep sea channels offer substantial spatial diversity among multiple channels that can be exploited to address simultaneous multipath and co-channel interference. At the same time, there are increasing requirements for high speed underwater communication in very shallow water area (for example, a depth less than 10 m). In this paper, a space-time multichannel adaptive receiver consisting of multiple decision feedback equalizers (DFE) is adopted as the receiver for a very shallow water MIMO acoustic communication system. The performance of multichannel DFE receivers with relatively small number of receiving elements are analyzed and compared with that of the multichannel time reversal receiver to evaluate the impact of limited spatial diversity on multi-channel equalization and time reversal processing. The results of sea trials in a very shallow water channel are presented to demonstrate the feasibility of very shallow water MIMO acoustic communication.展开更多
文摘为解决常规的递归最小二乘(recursive least squares,RLS)算法难以适应快变的水声信道,及未对水声信道的稀疏性加以利用导致均衡性能下降的问题,本文提出一种结合信道短化技术和基于l1范数宽线性变遗忘因子RLS自适应均衡技术判决反馈(decision feedback equalizer,DFE)接收机算法。试验结果表明:该接收机算法具有较低的计算复杂度,在稳态MSE和SER方面也具有较大的性能提升。
文摘研究了水声图像高速传输信号处理方法,它包括两个方面,一方面是水声相干通信信号处理方法,其中:(1)多普勒频移补偿,在数据包的前后两端插入已知线性调频(Chirp)信号,拷贝相关后求互相关,估计相对多普勒平均频移。在自适应判决反馈均衡器中加上自适应相位补偿器,采用快速自优化最小均方(LMS)算法,与其对应的速度容限优于常用的二阶锁相环相位补偿器的。两种补偿方法联合工作时,性能优良。(2)带有分集合并器的自适应判决反馈均衡器的算法是快速自优化的LMS算法,计算量小,性能优良。(3)自适应判决反馈均衡器与Turbo-网格编码调制(TCM)译码器级连、迭代算法。研究了基于软输出维特比(SOVA)方法的新型的比特-符号转换器,用它时误比特率(BER)比常规编码、映射方法的近似小2个数量级。另一方面是抗误码的图像压缩方法。本文基于数字小波变换和定长编码方法,研究了声图像的压缩。它包括:(1)选用CDF9/7小波进行小波变换。(2)对小波系数子带能量进行统计分析,三层小波分解是合适的。(3)对不同能量的子带采用不同的量化步长。(4)采用定长编码算法。结果表明声图像压缩比特率为0.85。当BER小于10^(-3)时,图像质量完好。当BER小于10^(-2)时,图像中出现少量小黑白点。在上述基础上研制了水声通信机,频带为(7.5~12.5)kHz,接收声呐阵为8基元等距线阵,信号为QPSK和8PSK。在中国千岛湖进行了湖试,采用SOVA硬迭代算法,达到了低BER。传输一幅256×256×8的声图需时约7s。传输距离与传输速率之积为55 km kbps。
基金Supported by the National Natural Science Foundation of China (Nos. 11274259, 11574258) and the Open Project Program of the Key Laboratory of Underwater Acoustic Signal Processing, the Minister of Educat on (Southeast Un versity) (No. UASP1305).
文摘Underwater acoustic channels pose a great difficulty for the development of high speed communication due to highly limited band-width as well as hostile multipath interference. Enlightened by rapid progress of multiple-input multiple-output (MIMO) technologies in wireless communication scenarios, MIMO systems offer a potential solution by enabling multiple spatially parallel communication channels to improve communication performance as well as capacity. For MIMO acoustic communications, deep sea channels offer substantial spatial diversity among multiple channels that can be exploited to address simultaneous multipath and co-channel interference. At the same time, there are increasing requirements for high speed underwater communication in very shallow water area (for example, a depth less than 10 m). In this paper, a space-time multichannel adaptive receiver consisting of multiple decision feedback equalizers (DFE) is adopted as the receiver for a very shallow water MIMO acoustic communication system. The performance of multichannel DFE receivers with relatively small number of receiving elements are analyzed and compared with that of the multichannel time reversal receiver to evaluate the impact of limited spatial diversity on multi-channel equalization and time reversal processing. The results of sea trials in a very shallow water channel are presented to demonstrate the feasibility of very shallow water MIMO acoustic communication.