期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
广义精细复合多尺度样本熵与流形学习相结合的滚动轴承故障诊断方法 被引量:22
1
作者 王振亚 姚立纲 《中国机械工程》 EI CAS CSCD 北大核心 2020年第20期2463-2471,共9页
针对滚动轴承故障特征提取困难的问题,提出了一种广义精细复合多尺度样本熵(GRCMSE)与流形学习相结合的特征提取方法。利用GRCMSE提取滚动轴承故障特征信息;采用判别式扩散映射分析(DDMA)方法对高维特征进行降维处理;将低维故障特征输... 针对滚动轴承故障特征提取困难的问题,提出了一种广义精细复合多尺度样本熵(GRCMSE)与流形学习相结合的特征提取方法。利用GRCMSE提取滚动轴承故障特征信息;采用判别式扩散映射分析(DDMA)方法对高维特征进行降维处理;将低维故障特征输入粒子群优化支持向量机多故障分类器中进行故障识别。滚动轴承故障实验分析结果表明:GRCMSE特征提取效果优于多尺度样本熵(MSE)、精细复合多尺度样本熵(RCMSE)和广义多尺度样本熵(GMSE);DDMA降维效果优于等度规映射(Isomap)和局部切空间排列(LTSA)的降维效果;GRCMSE和DDMA相结合后的滚动轴承故障识别精度达到100%。 展开更多
关键词 广义精细复合多尺度样本熵 判别式扩散映射分析 故障诊断 流形学习 滚动轴承
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部