期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
浅谈国家抽样标准GB2829在出口机电产品检验中的应用
1
作者 周洪儒 《外向经济》 1994年第5期16-19,共4页
1981年我国首次颁布了《逐批检查计数抽样程序及抽样表》GB2828;《周期检查计数抽样程序及抽样表》GB2829(以下分别简称GB2828和GB2829)两个抽样标准,并于1984年9月正式执行。GB2828已在许多行业中逐步推广,而GB2829人们对它还相当生疏... 1981年我国首次颁布了《逐批检查计数抽样程序及抽样表》GB2828;《周期检查计数抽样程序及抽样表》GB2829(以下分别简称GB2828和GB2829)两个抽样标准,并于1984年9月正式执行。GB2828已在许多行业中逐步推广,而GB2829人们对它还相当生疏,推行起来困难较大,至今采用的甚少。本文就GB2829在出口机电产品(以下简称出口产品)检验中的应用谈一些粗浅的看法。 一、GB2829的实用性 机电产品包括的范围相当广泛,品种繁多。特点是结构复杂,使用要求严格,质量特性值多。 展开更多
关键词 抽样标准 抽样方案 出口机电产品 判别水平 GB2828 批检 判定数组 周期检查 L值 出口检验
下载PDF
数学模型在我国国民收入统计中的运用
2
作者 阚苗苗 张泽 王兴 《长江大学学报(自科版)(上旬)》 CAS 2014年第12期16-18,21,2,共5页
为准确、客观地判断我国各省市、自治区经济发展状况,建立小康水平检验和小康水平判别模型,并使用SPSS软件对我国各省市、自治区是否达到小康水平的情况进行分析。研究表明,上海、北京、浙江、天津、广东、江苏、福建、山东、辽宁地区... 为准确、客观地判断我国各省市、自治区经济发展状况,建立小康水平检验和小康水平判别模型,并使用SPSS软件对我国各省市、自治区是否达到小康水平的情况进行分析。研究表明,上海、北京、浙江、天津、广东、江苏、福建、山东、辽宁地区的城镇和农村皆达到小康水平,说明上述地区的经济发展水平高;内蒙古、重庆、广西、湖南、安徽、云南、湖北、海南、河北、陕西、河南、山西地区的城镇达到小康水平,其农村未达到小康水平,说明上述述地区的经济发展水平较高;四川、吉林、宁夏、江西、贵州、西藏、黑龙江、青海、新疆、甘肃地区的城镇和农村都未达到小康水平,上述地区的经济发展水平较低。 展开更多
关键词 国民收入统计 小康水平检验模型 小康水平判别模型
下载PDF
Discriminate spatial Ricci scalar dark energy from ΛCDM
3
作者 YANG RongJia QI JingZhao CHEN BoHai 《Science China(Physics,Mechanics & Astronomy)》 SCIE EI CAS 2012年第10期1952-1955,共4页
We apply two geometrical diagnostics, the statefinder {s, r} and Om(x), to discriminate the Spatial Ricci scalar dark energy model from the ACDM model. We plot the evolution trajectories of those models in the state... We apply two geometrical diagnostics, the statefinder {s, r} and Om(x), to discriminate the Spatial Ricci scalar dark energy model from the ACDM model. We plot the evolution trajectories of those models in the statefinder plane and Om(x) plane. We show that the Spatial Ricci scalar dark energy model can be distinguished from the ACDM model at 68.3% confidence level for z ≤ 1. 展开更多
关键词 spatial Ricci scalar dark energy LCDM geometrical diagnostics
原文传递
Multifractal methods for rapeseed nitrogen nutrition qualitative diagnosis modeling
4
作者 Jian-Hui Li Fang Wang +2 位作者 Jin-Wei Li Rui-Biao Zou Gui-Ping Liao 《International Journal of Biomathematics》 2016年第4期285-297,共13页
Nutrition diagnosis plays a key role in the crop's growth, which has mainly been car- ried out in the field by agricultural workers. Currently, automatic nutrition recognition technologies have been widely used in th... Nutrition diagnosis plays a key role in the crop's growth, which has mainly been car- ried out in the field by agricultural workers. Currently, automatic nutrition recognition technologies have been widely used in this field. A procedure is proposed in this paper to diagnose nitrogen nutrition non-destructively for rapeseed qualitatively based on the multifractal theory. Twelve texture parameters are given by the method of multifractal detrended fluctuation (MF-DFA), which contains six generalized Hurst exponents and six relative multifractal parameters that are used as features of the rapeseed leaf images for identifying the two nitrogen levels, namely, the N-mezzo and the N-wane. For the base leaves, central leaves and top leaves of the rapeseed plant and the three-section mixed samples, three parameters combinations are selected to conduct the work. Five classifiers of Fisher's linear discriminant algorithm (LDA), extreme learning machine (ELM), support vector machine and kernel method (SVMKM), random decision forests (RF) and K-nearest neighbor algorithm (KNN) are employed to calculate the diagno- sis accuracy. An interesting finding is that the best diagnose accuracy is from the base leaves of the rapeseed plant. It is explained that the base leaf is the most sensitive to the nitrogen deficiency. The diagnose effect by the base leaves samples is outshining the existing result significantly for the same leaves samples. For the mixed samples, the aver- aged discriminant accuracy reaches 97.12% and 97.56% by SVMKM and RF methods with the 10-fold cross-validation respectively. The resulting high accuracy on N-levels identification shows the feasibility and efficiency of our method. 展开更多
关键词 Rapeseed leaf image nitrogen diagnosis multifractal detrended fluctuationanalysis classifiers.
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部