期刊文献+
共找到12篇文章
< 1 >
每页显示 20 50 100
基于判别稀疏编码的液压泵故障诊断 被引量:1
1
作者 王鹏飞 王新晴 +2 位作者 王云龙 李艳峰 高天宇 《解放军理工大学学报(自然科学版)》 EI 北大核心 2016年第2期187-191,共5页
为解决液压泵故障信号特征难以提取的问题,提出了一种基于判别稀疏编码的液压泵故障诊断新方法。在稀疏编码框架中引入Fisher判别准则,通过对训练样本进行字典学习,获取具有判别性的字典与稀疏系数,使用不同故障类别字典对测试样本进行... 为解决液压泵故障信号特征难以提取的问题,提出了一种基于判别稀疏编码的液压泵故障诊断新方法。在稀疏编码框架中引入Fisher判别准则,通过对训练样本进行字典学习,获取具有判别性的字典与稀疏系数,使用不同故障类别字典对测试样本进行稀疏表示,利用全局分类方法综合重构误差与系数偏差两方面参数,对液压泵故障信号进行识别。实验结果表明,对于不同状态下的液压泵振动信号,该方法可自适应地完成各类子字典的学习与模式识别过程,与传统方法相比,在液压泵故障诊断中具有更高的准确率和较好的稳定性。 展开更多
关键词 液压泵 故障诊断 判别稀疏编码 重构误差
下载PDF
基于超像素和判别稀疏的运动目标跟踪算法 被引量:4
2
作者 邱晓荣 彭力 刘全胜 《计算机工程与应用》 CSCD 北大核心 2018年第15期1-5,共5页
针对目标遮挡、非刚性变换、光照变换等因素干扰产生的漂移问题,提出基于超像素和判别稀疏的运动目标跟踪算法。算法首先利用SLIC方法对运动目标的观测区域进行超像素分割,然后通过K-Means算法构建包含目标和背景的超像素字典,再基于判... 针对目标遮挡、非刚性变换、光照变换等因素干扰产生的漂移问题,提出基于超像素和判别稀疏的运动目标跟踪算法。算法首先利用SLIC方法对运动目标的观测区域进行超像素分割,然后通过K-Means算法构建包含目标和背景的超像素字典,再基于判别稀疏表示和?1范数最小化框架求解候选目标的稀疏系数,同时结合粒子滤波框架和在线字典更新策略完成目标跟踪。实验结果表明,该算法在多种因素干扰的环境中具有较强的鲁棒性,能够准确稳定地进行在线目标跟踪。 展开更多
关键词 判别稀疏 超像素 目标跟踪 表观模型
下载PDF
基于结构信息建模和判别稀疏的红外小目标跟踪方法 被引量:2
3
作者 木尼拉·塔里甫 安尼瓦尔·加马力 亚森·艾则孜 《光学技术》 CAS CSCD 北大核心 2021年第5期622-631,共10页
为了提高背景杂波和成像噪声等干扰下红外小目标的跟踪精度,提出了一种基于结构信息建模和判别稀疏的红外小目标跟踪方法。小目标信号在广义高斯目标超完备字典上被稀疏分解,以便从受噪声干扰和杂波污染的红外图像中提取出小目标的空间... 为了提高背景杂波和成像噪声等干扰下红外小目标的跟踪精度,提出了一种基于结构信息建模和判别稀疏的红外小目标跟踪方法。小目标信号在广义高斯目标超完备字典上被稀疏分解,以便从受噪声干扰和杂波污染的红外图像中提取出小目标的空间结构信息;设计了转移受限粒子滤波跟踪算法,以提高粒子的采样概率;在转移受限粒子滤波框架下,基于判别稀疏表示和L1范数最小化框架求解候选目标的稀疏系数,实现小目标的跟踪。基于各种红外序列对所提方法进行实验论证,实验结果表明,所提方法能够在杂波和噪声较大的干扰下稳定地跟踪小目标,其中心误差、重叠率和平均视频播放帧率分别为3pixel、0.7和40fps,均优于其他对比方法,且具有较强的鲁棒性。 展开更多
关键词 红外小目标跟踪 结构信息建模 广义高斯目标超完备字典 判别稀疏表示 转移受限粒子滤波框架
下载PDF
判别稀疏表示鲁棒快速视觉跟踪
4
作者 刘文琢 袁广林 薛模根 《中国图象图形学报》 CSCD 北大核心 2017年第6期815-823,共9页
目的 L1跟踪对局部遮挡具有良好的鲁棒性,但存在易产生模型漂移和计算速度慢的问题。针对这两个问题,该文提出了一种基于判别稀疏表示的视觉跟踪方法。方法考虑到背景和遮挡信息的干扰,提出了一种判别稀疏表示模型,并基于块坐标优化原理... 目的 L1跟踪对局部遮挡具有良好的鲁棒性,但存在易产生模型漂移和计算速度慢的问题。针对这两个问题,该文提出了一种基于判别稀疏表示的视觉跟踪方法。方法考虑到背景和遮挡信息的干扰,提出了一种判别稀疏表示模型,并基于块坐标优化原理,采用学习迭代收缩阈值算法和软阈值操作设计出了表示模型的快速求解算法。结果在8组图像序列中,该文方法与现有的4种经典跟踪方法分别在鲁棒性和稀疏表示的计算时间方面进行了比较。在鲁棒性的定性和定量比较实验中,该文方法不仅表现出了对跟踪过程中的多种干扰因素具有良好的适应能力,而且在位置误差阈值从0~50像素的变化过程中,其精度曲线均优于实验中的其他方法;在稀疏表示的计算时间方面,在采用大小为16×16和32×32的模板进行跟踪时,该文算法的时间消耗分别为0.152 s和0.257 s,其时效性明显优于实验中的其他方法。结论与经典的跟踪方法相比,该文方法能够在克服遮挡、背景干扰和外观改变等诸多不良因素的同时,实现快速目标跟踪。由于该文方法不仅具有较优的稀疏表示计算速度,而且能够克服多种影响跟踪鲁棒性的干扰因素,因此可以将其应用于视频监控和体育竞技等实际场合。 展开更多
关键词 机器视觉 目标跟踪 判别稀疏表示 前馈神经网络 粒子滤波
原文传递
基于稀疏判别分析的高光谱影像特征提取 被引量:3
5
作者 周亚文 董广军 +2 位作者 薛志祥 黎珂 王惠英 《测绘科学技术学报》 CSCD 北大核心 2017年第4期370-375,共6页
针对当前特征提取方法不能充分挖掘高光谱影像稀疏特性的问题,提出一种基于稀疏判别分析的高光谱影像特征提取方法。首先,在线性判别分析的系数向量中引入稀疏正则项来捕获具有更强判别能力的特征,将高光谱影像映射至低维稀疏的子空间;... 针对当前特征提取方法不能充分挖掘高光谱影像稀疏特性的问题,提出一种基于稀疏判别分析的高光谱影像特征提取方法。首先,在线性判别分析的系数向量中引入稀疏正则项来捕获具有更强判别能力的特征,将高光谱影像映射至低维稀疏的子空间;然后,利用迭代优化方法对模型进行求解。利用Salinas和Pavia University高光谱影像进行对比实验,所提方法与分类方法结合用于影像分类时,其分类精度优于其他方法,总体分类精度分别达到97.42%和97.64%。 展开更多
关键词 高光谱影像 稀疏表示 稀疏判别分析 线性判别分析 特征提取
下载PDF
基于FTIR技术和稀疏线性判别分析的秦艽种类鉴别 被引量:1
6
作者 李四海 余晓晖 +1 位作者 赵磊 晋玲 《光谱学与光谱分析》 SCIE EI CAS CSCD 北大核心 2018年第8期2390-2394,共5页
傅里叶变换红外光谱通常包含有大量的波长变量点,对其进行定性分析需要建立稳健的、可解释性的分类模型。稀疏线性判别分析(SLDA)是一种较为新颖和有效的机器学习算法,常用于高维度、小样本数据的变量筛选和判别分析,SLDA通过在线性判... 傅里叶变换红外光谱通常包含有大量的波长变量点,对其进行定性分析需要建立稳健的、可解释性的分类模型。稀疏线性判别分析(SLDA)是一种较为新颖和有效的机器学习算法,常用于高维度、小样本数据的变量筛选和判别分析,SLDA通过在线性判别分析中引入正则项,使分类器训练过程和变量选择过程同时完成,不同判别方向上载荷系数的稀疏性则增强了模型的可解释性。采集甘肃不同产地的秦艽样本94个,其中麻花秦艽(Gentiana straminea Maxim)30个,黄管秦艽(Gentiana officinalis)28个,大叶秦艽(Gentiana macrophylla Pall)36个,利用傅里叶变换红外光谱法获得所有样本的光谱图。取其中70个样本构成训练集,剩余24个为测试集。使用训练集建立SLDA模型,对2个判别方向上不为0的载荷系数个数进行网格化寻优,得到了最优的参数空间。利用建立的SLDA模型对测试样本进行预测,其分类准确率达到100%,实现了对三种秦艽的快速、准确鉴别。实验结果表明,与PLS-DA方法相比,SLDA模型在分类准确率、稀疏性及可解释性方面均具有一定优势,是一种新颖、有效的光谱定性分析方法。 展开更多
关键词 秦艽 傅里叶变换红外光谱 正则化 稀疏线性判别分析 变量选择
下载PDF
基于主成分分析和支持向量机的鲁棒稀疏线性判别分析方法 被引量:3
7
作者 鞠厦轶 吕开云 +1 位作者 龚循强 鲁铁定 《科学技术与工程》 北大核心 2022年第26期11515-11523,共9页
线性判别分析(linear discriminant analysis,LDA)是一种基于监督学习的模式识别方法,在图像识别领域应用广泛。针对经典的LDA识别率不高、识别效率低以及鲁棒性不强的问题,提出了一种基于主成分分析(principal component analysis,PCA... 线性判别分析(linear discriminant analysis,LDA)是一种基于监督学习的模式识别方法,在图像识别领域应用广泛。针对经典的LDA识别率不高、识别效率低以及鲁棒性不强的问题,提出了一种基于主成分分析(principal component analysis,PCA)和支持向量机(support vector machine,SVM)的鲁棒稀疏线性判别分析方法。通过ORL人脸图像库、YaleB人脸图像库、COIL20物体图像库和UCI机器学习库中部分图像集,将本文方法与线性判别分析、鲁棒线性判别分析、基于L1范数和巴氏距离的鲁棒线性判别分析、鲁棒自适应线性判别分析和鲁棒稀疏线性判别分析6种方法进行比较。实验结果表明,在ORL人脸库、COIL20物体库和UCI机器学习库中的部分图像集中,本文方法的识别率和识别效率均高于其他5种方法。在YaleB人脸库加入椒盐噪声的条件下,本文方法的识别率均值为81.35%,说明提出方法的识别率和鲁棒性均优于其他5种方法。 展开更多
关键词 鲁棒稀疏线性判别分析 主成分分析(PCA) 图像识别 监督分类 支持向量机(SVM)
下载PDF
稳健稀疏线性判别分析方法在人脸识别中的应用
8
作者 鞠厦轶 吕开云 龚循强 《江西科学》 2021年第5期938-942,共5页
线性判别分析(LDA)是一种在机器学习领域众所周知的监督分类方法,在特征提取方面效果显著。传统的LDA解决了散度矩阵中存在奇异矩阵的问题,但却没有考虑人脸图像中可能存在的椒盐噪声,且无法确定低维空间维数。为此,采用稳健稀疏线性判... 线性判别分析(LDA)是一种在机器学习领域众所周知的监督分类方法,在特征提取方面效果显著。传统的LDA解决了散度矩阵中存在奇异矩阵的问题,但却没有考虑人脸图像中可能存在的椒盐噪声,且无法确定低维空间维数。为此,采用稳健稀疏线性判别分析(Robust Sparse Linear Discriminant Analysis,RSLDA)进行人脸识别,选取公开的人脸库(ORL、CMU_PIE、Yale B)对LDA、PCA+LDA、ULDA、OLDA、L21FLDA和RSLDA这6种方法进行系统地比较。实验结果表明,在原始人脸图像中,RSLDA的识别率均在94.82%以上,均高于其他5种方法。当人脸图像存在椒盐噪声时,RSLDA的识别率远高于其他方法。 展开更多
关键词 线性判别分析方法 稳健稀疏线性判别分析方法 椒盐噪声 人脸识别 识别率
下载PDF
A new discriminative sparse parameter classifier with iterative removal for face recognition
9
作者 TANG De-yan ZHOU Si-wang +2 位作者 LUO Meng-ru CHEN Hao-wen TANG Hui 《Journal of Central South University》 SCIE EI CAS CSCD 2022年第4期1226-1238,共13页
Face recognition has been widely used and developed rapidly in recent years.The methods based on sparse representation have made great breakthroughs,and collaborative representation-based classification(CRC)is the typ... Face recognition has been widely used and developed rapidly in recent years.The methods based on sparse representation have made great breakthroughs,and collaborative representation-based classification(CRC)is the typical representative.However,CRC cannot distinguish similar samples well,leading to a wrong classification easily.As an improved method based on CRC,the two-phase test sample sparse representation(TPTSSR)removes the samples that make little contribution to the representation of the testing sample.Nevertheless,only one removal is not sufficient,since some useless samples may still be retained,along with some useful samples maybe being removed randomly.In this work,a novel classifier,called discriminative sparse parameter(DSP)classifier with iterative removal,is proposed for face recognition.The proposed DSP classifier utilizes sparse parameter to measure the representation ability of training samples straight-forward.Moreover,to avoid some useful samples being removed randomly with only one removal,DSP classifier removes most uncorrelated samples gradually with iterations.Extensive experiments on different typical poses,expressions and noisy face datasets are conducted to assess the performance of the proposed DSP classifier.The experimental results demonstrate that DSP classifier achieves a better recognition rate than the well-known SRC,CRC,RRC,RCR,SRMVS,RFSR and TPTSSR classifiers for face recognition in various situations. 展开更多
关键词 collaborative representation-based classification discriminative sparse parameter classifier face recognition iterative removal sparse representation two-phase test sample sparse representation
下载PDF
Discriminative Structured Dictionary Learning for Image Classification
10
作者 王萍 兰俊花 +1 位作者 臧玉卫 宋占杰 《Transactions of Tianjin University》 EI CAS 2016年第2期158-163,共6页
In this paper, a discriminative structured dictionary learning algorithm is presented. To enhance the dictionary's discriminative power, the reconstruction error, classification error and inhomogeneous representat... In this paper, a discriminative structured dictionary learning algorithm is presented. To enhance the dictionary's discriminative power, the reconstruction error, classification error and inhomogeneous representation error are integrated into the objective function. The proposed approach learns a single structured dictionary and a linear classifier jointly. The learned dictionary encourages the samples from the same class to have similar sparse codes, and the samples from different classes to have dissimilar sparse codes. The solution to the objective function is achieved by employing a feature-sign search algorithm and Lagrange dual method. Experimental results on three public databases demonstrate that the proposed approach outperforms several recently proposed dictionary learning techniques for classification. 展开更多
关键词 sparse representation dictionary learning sparse coding image classification
下载PDF
Discriminant embedding by sparse representation and nonparametric discriminant analysis for face recognition
11
作者 杜春 周石琳 +2 位作者 孙即祥 孙浩 王亮亮 《Journal of Central South University》 SCIE EI CAS 2013年第12期3564-3572,共9页
A novel supervised dimensionality reduction algorithm, named discriminant embedding by sparse representation and nonparametric discriminant analysis(DESN), was proposed for face recognition. Within the framework of DE... A novel supervised dimensionality reduction algorithm, named discriminant embedding by sparse representation and nonparametric discriminant analysis(DESN), was proposed for face recognition. Within the framework of DESN, the sparse local scatter and multi-class nonparametric between-class scatter were exploited for within-class compactness and between-class separability description, respectively. These descriptions, inspired by sparse representation theory and nonparametric technique, are more discriminative in dealing with complex-distributed data. Furthermore, DESN seeks for the optimal projection matrix by simultaneously maximizing the nonparametric between-class scatter and minimizing the sparse local scatter. The use of Fisher discriminant analysis further boosts the discriminating power of DESN. The proposed DESN was applied to data visualization and face recognition tasks, and was tested extensively on the Wine, ORL, Yale and Extended Yale B databases. Experimental results show that DESN is helpful to visualize the structure of high-dimensional data sets, and the average face recognition rate of DESN is about 9.4%, higher than that of other algorithms. 展开更多
关键词 dimensionality reduction sparse representation nonparametric discriminant analysis
下载PDF
基于不同关键词提取算法的维吾尔文本情感辨识
12
作者 赛牙热.依马木 热依莱木.帕尔哈提 +1 位作者 艾斯卡尔.艾木都拉 李志军 《清华大学学报(自然科学版)》 EI CAS CSCD 北大核心 2017年第3期270-273,共4页
该文在研究不同的关键词提取方法的基础上,针对维吾尔语文本中的生气、高兴等常见情感类型进行情感辨识研究。结合维吾尔文本句子中的情感表达特点,用TextRank、稀疏判别分析(sparse discriminant analysis,SDA)和稀疏支持向量机(sparse... 该文在研究不同的关键词提取方法的基础上,针对维吾尔语文本中的生气、高兴等常见情感类型进行情感辨识研究。结合维吾尔文本句子中的情感表达特点,用TextRank、稀疏判别分析(sparse discriminant analysis,SDA)和稀疏支持向量机(sparse support vector machine,Sparse SVM)等提取方法得到具有代表性的关键词集,并基于这些关键词集进行特征提取和情感模型构造。该文从电影电视剧中演员的维吾尔语台词、小说等文本中选取含有生气和高兴2种情感文本的句子,构造实验数据集并验证所提出的文本情感倾向性分析方法的有效性。实验结果表明:该文用多种方法所提取的关键词集都能有效地对维吾尔语文本句子进行情感分类,尤其是基于Sparse SVM的稀疏性分析的关键词提取方法在少量关键词语集上能有效地进行较高准确率的情感分类。 展开更多
关键词 TextRank 稀疏判别分析(SDA) 稀疏支持向量机(Sparse SVM) 情感识别 维吾尔语
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部