期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
判别稀疏表示鲁棒快速视觉跟踪
1
作者 刘文琢 袁广林 薛模根 《中国图象图形学报》 CSCD 北大核心 2017年第6期815-823,共9页
目的 L1跟踪对局部遮挡具有良好的鲁棒性,但存在易产生模型漂移和计算速度慢的问题。针对这两个问题,该文提出了一种基于判别稀疏表示的视觉跟踪方法。方法考虑到背景和遮挡信息的干扰,提出了一种判别稀疏表示模型,并基于块坐标优化原理... 目的 L1跟踪对局部遮挡具有良好的鲁棒性,但存在易产生模型漂移和计算速度慢的问题。针对这两个问题,该文提出了一种基于判别稀疏表示的视觉跟踪方法。方法考虑到背景和遮挡信息的干扰,提出了一种判别稀疏表示模型,并基于块坐标优化原理,采用学习迭代收缩阈值算法和软阈值操作设计出了表示模型的快速求解算法。结果在8组图像序列中,该文方法与现有的4种经典跟踪方法分别在鲁棒性和稀疏表示的计算时间方面进行了比较。在鲁棒性的定性和定量比较实验中,该文方法不仅表现出了对跟踪过程中的多种干扰因素具有良好的适应能力,而且在位置误差阈值从0~50像素的变化过程中,其精度曲线均优于实验中的其他方法;在稀疏表示的计算时间方面,在采用大小为16×16和32×32的模板进行跟踪时,该文算法的时间消耗分别为0.152 s和0.257 s,其时效性明显优于实验中的其他方法。结论与经典的跟踪方法相比,该文方法能够在克服遮挡、背景干扰和外观改变等诸多不良因素的同时,实现快速目标跟踪。由于该文方法不仅具有较优的稀疏表示计算速度,而且能够克服多种影响跟踪鲁棒性的干扰因素,因此可以将其应用于视频监控和体育竞技等实际场合。 展开更多
关键词 机器视觉 目标跟踪 判别稀疏表示 前馈神经网络 粒子滤波
原文传递
基于结构信息建模和判别稀疏的红外小目标跟踪方法 被引量:2
2
作者 木尼拉·塔里甫 安尼瓦尔·加马力 亚森·艾则孜 《光学技术》 CAS CSCD 北大核心 2021年第5期622-631,共10页
为了提高背景杂波和成像噪声等干扰下红外小目标的跟踪精度,提出了一种基于结构信息建模和判别稀疏的红外小目标跟踪方法。小目标信号在广义高斯目标超完备字典上被稀疏分解,以便从受噪声干扰和杂波污染的红外图像中提取出小目标的空间... 为了提高背景杂波和成像噪声等干扰下红外小目标的跟踪精度,提出了一种基于结构信息建模和判别稀疏的红外小目标跟踪方法。小目标信号在广义高斯目标超完备字典上被稀疏分解,以便从受噪声干扰和杂波污染的红外图像中提取出小目标的空间结构信息;设计了转移受限粒子滤波跟踪算法,以提高粒子的采样概率;在转移受限粒子滤波框架下,基于判别稀疏表示和L1范数最小化框架求解候选目标的稀疏系数,实现小目标的跟踪。基于各种红外序列对所提方法进行实验论证,实验结果表明,所提方法能够在杂波和噪声较大的干扰下稳定地跟踪小目标,其中心误差、重叠率和平均视频播放帧率分别为3pixel、0.7和40fps,均优于其他对比方法,且具有较强的鲁棒性。 展开更多
关键词 红外小目标跟踪 结构信息建模 广义高斯目标超完备字典 判别稀疏表示 转移受限粒子滤波框架
下载PDF
A new discriminative sparse parameter classifier with iterative removal for face recognition
3
作者 TANG De-yan ZHOU Si-wang +2 位作者 LUO Meng-ru CHEN Hao-wen TANG Hui 《Journal of Central South University》 SCIE EI CAS CSCD 2022年第4期1226-1238,共13页
Face recognition has been widely used and developed rapidly in recent years.The methods based on sparse representation have made great breakthroughs,and collaborative representation-based classification(CRC)is the typ... Face recognition has been widely used and developed rapidly in recent years.The methods based on sparse representation have made great breakthroughs,and collaborative representation-based classification(CRC)is the typical representative.However,CRC cannot distinguish similar samples well,leading to a wrong classification easily.As an improved method based on CRC,the two-phase test sample sparse representation(TPTSSR)removes the samples that make little contribution to the representation of the testing sample.Nevertheless,only one removal is not sufficient,since some useless samples may still be retained,along with some useful samples maybe being removed randomly.In this work,a novel classifier,called discriminative sparse parameter(DSP)classifier with iterative removal,is proposed for face recognition.The proposed DSP classifier utilizes sparse parameter to measure the representation ability of training samples straight-forward.Moreover,to avoid some useful samples being removed randomly with only one removal,DSP classifier removes most uncorrelated samples gradually with iterations.Extensive experiments on different typical poses,expressions and noisy face datasets are conducted to assess the performance of the proposed DSP classifier.The experimental results demonstrate that DSP classifier achieves a better recognition rate than the well-known SRC,CRC,RRC,RCR,SRMVS,RFSR and TPTSSR classifiers for face recognition in various situations. 展开更多
关键词 collaborative representation-based classification discriminative sparse parameter classifier face recognition iterative removal sparse representation two-phase test sample sparse representation
下载PDF
Discriminant embedding by sparse representation and nonparametric discriminant analysis for face recognition
4
作者 杜春 周石琳 +2 位作者 孙即祥 孙浩 王亮亮 《Journal of Central South University》 SCIE EI CAS 2013年第12期3564-3572,共9页
A novel supervised dimensionality reduction algorithm, named discriminant embedding by sparse representation and nonparametric discriminant analysis(DESN), was proposed for face recognition. Within the framework of DE... A novel supervised dimensionality reduction algorithm, named discriminant embedding by sparse representation and nonparametric discriminant analysis(DESN), was proposed for face recognition. Within the framework of DESN, the sparse local scatter and multi-class nonparametric between-class scatter were exploited for within-class compactness and between-class separability description, respectively. These descriptions, inspired by sparse representation theory and nonparametric technique, are more discriminative in dealing with complex-distributed data. Furthermore, DESN seeks for the optimal projection matrix by simultaneously maximizing the nonparametric between-class scatter and minimizing the sparse local scatter. The use of Fisher discriminant analysis further boosts the discriminating power of DESN. The proposed DESN was applied to data visualization and face recognition tasks, and was tested extensively on the Wine, ORL, Yale and Extended Yale B databases. Experimental results show that DESN is helpful to visualize the structure of high-dimensional data sets, and the average face recognition rate of DESN is about 9.4%, higher than that of other algorithms. 展开更多
关键词 dimensionality reduction sparse representation nonparametric discriminant analysis
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部