Objective :To investigate the different suppressive effect of lidocaine on persistent Na^+ current and transient Na^+ current in injured or uninjured dorsal root ganglion neurons. Methods: Totally 23 SD rats were ...Objective :To investigate the different suppressive effect of lidocaine on persistent Na^+ current and transient Na^+ current in injured or uninjured dorsal root ganglion neurons. Methods: Totally 23 SD rats were randomly divided into 2 groups: control group (n: 10) and chronically compressed DRG (dorsal root ganglion) group (CCD group, n= 13). Rats were anesthetized and DRG was isolated. Single DRG neuron was isolated by enzymatic disassociation method. Persistent Na^+ current (INap) and transient Na^+ current (INaT) were elicited in voltage clamp mode. Results: The presence of INap was testified in most DRG neurons (38/46 neurons in CCD group and 31/39 neurons in control group, P〉0. 05). However, the cur- rent density of INap in CCD group (4. 6±0. 6 pA/pF, n=38 neurons) was greater than that in control group (2.5±0.4 pA/pF, n=31 neurons) (P〈0. 05). The characteristics of INap was observed and found that INap could he blocked by 0.2 μmol/L tetrodotoxin easily. Furthermore, the does-effect relationship of lidocaine on INaP and IN.T were also examined. INaP and IN.T were suppressed by different concentrations of li- docaine, the range for INap was 5-20 μmol/L and for INaT was 0. 05-2 mmol/L. Conclusion: INap and INaT were suppressed by different concentrations of lidocaine. INap was suppressed by very low concentration of lidocaine (5-20 μmol/L). However, INaT could only be blocked by high concentration of lidocaine (0.05-2 mmol/L).展开更多
基金the National Natural Science Foundation of China(No.30600581)
文摘Objective :To investigate the different suppressive effect of lidocaine on persistent Na^+ current and transient Na^+ current in injured or uninjured dorsal root ganglion neurons. Methods: Totally 23 SD rats were randomly divided into 2 groups: control group (n: 10) and chronically compressed DRG (dorsal root ganglion) group (CCD group, n= 13). Rats were anesthetized and DRG was isolated. Single DRG neuron was isolated by enzymatic disassociation method. Persistent Na^+ current (INap) and transient Na^+ current (INaT) were elicited in voltage clamp mode. Results: The presence of INap was testified in most DRG neurons (38/46 neurons in CCD group and 31/39 neurons in control group, P〉0. 05). However, the cur- rent density of INap in CCD group (4. 6±0. 6 pA/pF, n=38 neurons) was greater than that in control group (2.5±0.4 pA/pF, n=31 neurons) (P〈0. 05). The characteristics of INap was observed and found that INap could he blocked by 0.2 μmol/L tetrodotoxin easily. Furthermore, the does-effect relationship of lidocaine on INaP and IN.T were also examined. INaP and IN.T were suppressed by different concentrations of li- docaine, the range for INap was 5-20 μmol/L and for INaT was 0. 05-2 mmol/L. Conclusion: INap and INaT were suppressed by different concentrations of lidocaine. INap was suppressed by very low concentration of lidocaine (5-20 μmol/L). However, INaT could only be blocked by high concentration of lidocaine (0.05-2 mmol/L).