Solutions of fuzzy differential equations provide a noteworthy example of time-dependent fuzzy sets The purpose of this paper is to introduce functions of a suitable Lyapunov-like type and to show the existence and ...Solutions of fuzzy differential equations provide a noteworthy example of time-dependent fuzzy sets The purpose of this paper is to introduce functions of a suitable Lyapunov-like type and to show the existence and uniqueness theorem for the Cauchy problem of fuzzy differential equations under non-Lipschitz conditions The comparison principles and the existence and uniqueness theorems of this paper generalize many well-known results up to now展开更多
Let C be a nonempty bounded subset of a p-uniformly convex Banach space X, and T = {T(t): t S} be a Lipschitzian semigroup on C with lim inf |||T(t)||| < Np, where Np is n→ t s the normal structure coefficient of ...Let C be a nonempty bounded subset of a p-uniformly convex Banach space X, and T = {T(t): t S} be a Lipschitzian semigroup on C with lim inf |||T(t)||| < Np, where Np is n→ t s the normal structure coefficient of X. Suppose also there exists a nonempty bounded closed convex subset E of C with the following properties: (P1)x: E implies ωω(χ) C E; (P2)T is asymptotically regular on E. The authors prove that there exists a z E such that T(s)z = z for all s S. Fruther, under the similar condition, the existence of fixed points of Lipschitzian semigroups in a uniformly convex Banach space is discussed.展开更多
This paper deals with the existence and multiplicity of periodic solutions of Duffing equations x + g(x) = p(t). The author proves an infinity of periodic solutions to the periodically forced nonlinear Duffing equatio...This paper deals with the existence and multiplicity of periodic solutions of Duffing equations x + g(x) = p(t). The author proves an infinity of periodic solutions to the periodically forced nonlinear Duffing equations provided that g(x) satisfies the globally lipschitzian condition and the time-mapping satisfies the weaker oscillating property.展开更多
The existence, partial regularity and uniqueness of weak solution to the initial boundary value problem for the unsaturated Landau-Lifschitz systems are given.
This paper gives all the two-dimensional membrane models obtained from formal asymptotic analysis of the three-dimensional geometrically exact nonlinear model of a thin elastic shell made with a Saint Venant-Kirchhoff...This paper gives all the two-dimensional membrane models obtained from formal asymptotic analysis of the three-dimensional geometrically exact nonlinear model of a thin elastic shell made with a Saint Venant-Kirchhoff material. Therefore, the other models can be quoted as flexural nonlinear ones. The author also gives the formal equations solved by the associated stress tensor and points out that only one of those models leads, by linearization, to the "classical" linear limiting membrane model, whose justification has already been established by a convergence theorem.展开更多
文摘Solutions of fuzzy differential equations provide a noteworthy example of time-dependent fuzzy sets The purpose of this paper is to introduce functions of a suitable Lyapunov-like type and to show the existence and uniqueness theorem for the Cauchy problem of fuzzy differential equations under non-Lipschitz conditions The comparison principles and the existence and uniqueness theorems of this paper generalize many well-known results up to now
基金the National Natural Science Foundation of China (No.19801023) and theTeaching and Research Award Fund for Outstanding Young T
文摘Let C be a nonempty bounded subset of a p-uniformly convex Banach space X, and T = {T(t): t S} be a Lipschitzian semigroup on C with lim inf |||T(t)||| < Np, where Np is n→ t s the normal structure coefficient of X. Suppose also there exists a nonempty bounded closed convex subset E of C with the following properties: (P1)x: E implies ωω(χ) C E; (P2)T is asymptotically regular on E. The authors prove that there exists a z E such that T(s)z = z for all s S. Fruther, under the similar condition, the existence of fixed points of Lipschitzian semigroups in a uniformly convex Banach space is discussed.
文摘This paper deals with the existence and multiplicity of periodic solutions of Duffing equations x + g(x) = p(t). The author proves an infinity of periodic solutions to the periodically forced nonlinear Duffing equations provided that g(x) satisfies the globally lipschitzian condition and the time-mapping satisfies the weaker oscillating property.
基金the National Natural Science Foundation of China!(No. 19971030)
文摘The existence, partial regularity and uniqueness of weak solution to the initial boundary value problem for the unsaturated Landau-Lifschitz systems are given.
文摘This paper gives all the two-dimensional membrane models obtained from formal asymptotic analysis of the three-dimensional geometrically exact nonlinear model of a thin elastic shell made with a Saint Venant-Kirchhoff material. Therefore, the other models can be quoted as flexural nonlinear ones. The author also gives the formal equations solved by the associated stress tensor and points out that only one of those models leads, by linearization, to the "classical" linear limiting membrane model, whose justification has already been established by a convergence theorem.