期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于监督对比学习的小样本甲骨文字识别
1
作者 毕晓君 毛亚菲 《智能系统学报》 CSCD 北大核心 2024年第1期106-113,共8页
针对由于甲骨文中部分字符的出现频率较低,直接利用深度神经网络进行识别会产生严重的过拟合现象,进而导致识别精度较差的问题,本文提出一种基于监督对比学习的小样本甲骨文字识别方法。选用利用增强样本的Y型(ensemble augmented-shot ... 针对由于甲骨文中部分字符的出现频率较低,直接利用深度神经网络进行识别会产生严重的过拟合现象,进而导致识别精度较差的问题,本文提出一种基于监督对比学习的小样本甲骨文字识别方法。选用利用增强样本的Y型(ensemble augmented-shot Y-shaped,EASY)学习框架作为网络的主干部分,通过集合数据增强、多骨干网络集成、特征向量投影等训练策略,直接实现利用少量带标签样本进行识别;引入监督对比学习,并提出联合对比损失,使得特征空间中类内特征向量距离更近,类间特征向量距离更远,进一步提高模型性能。实验结果表明:相比于当前效果最好的Orc-Bert模型,提出的小样本甲骨文识别模型在1-shot任务中的准确率提升了26.42%,3-shot任务的准确率提升了28.55%,5-shot任务的准确率提升了23.98%,较好解决了低频率出现的甲骨文字识别精度较差的问题。 展开更多
关键词 甲骨文字识别 样本 监督对比学习 利用增强样本的y型学习框架 深度学习 特征空间 联合对比损失
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部