Aptamers are a type of single-chain oligonucleotide that can combine with a specific target.Due to their simple preparation,easy modification,stable structure and reusability,aptamers have been widely applied as bioch...Aptamers are a type of single-chain oligonucleotide that can combine with a specific target.Due to their simple preparation,easy modification,stable structure and reusability,aptamers have been widely applied as biochemical sensors for medicine,food safety and environmental monitoring.However,there is little research on aptamer-target binding mechanisms,which limits their application and development.Computational simulation has gained much attention for revealing aptamer-target binding mechanisms at the atomic level.This work summarizes the main simulation methods used in the mechanistic analysis of aptamer-target complexes,the characteristics of binding between aptamers and different targets(metal ions,small organic molecules,biomacromolecules,cells,bacteria and viruses),the types of aptamer-target interactions and the factors influencing their strength.It provides a reference for further use of simulations in understanding aptamer-target binding mechanisms.展开更多
In order to improve the mechanical properties and corrosion resistance of Mg alloys,the equal channel angular extrusion (ECAE)was employed to fabricate the Mg-5Gd-5Y/Mg-2Zn-1Gd(GW55/ZG21)laminated composites.After fab...In order to improve the mechanical properties and corrosion resistance of Mg alloys,the equal channel angular extrusion (ECAE)was employed to fabricate the Mg-5Gd-5Y/Mg-2Zn-1Gd(GW55/ZG21)laminated composites.After fabrication and annealing treatment,the microstructural evolution,phase constitution,microhardness,and bonding strength were investigated on the bonding interface zone of GW55/ZG21 laminated composites.The bonding interface zone of GW55/ZG21 laminated composites comprises a lot of Mg3(Y,Gd)2Zn3 particles along the bonding interface,some rod Mg24(Y,Gd)5 phases on GW55 side,and a precipitation free zone(PFZ)on ZG21 side.After annealing treatment,Mg3(Y,Gd)2Zn3 particles along the bonding interface increase, rod Mg24(Y,Gd)5 phases on GW55 side decrease,and PFZ is broadened.Meanwhile,the hardness on the bonding interface zone decreases and the bonding strength increases from 126 MPa to 162 MPa.展开更多
Based on the mechanism of the effect of hydration on the heat stability of lysozyme and the theory of water molecule clusters, the effect of structure-changed water on heat stability of lysozyme has been studied. The ...Based on the mechanism of the effect of hydration on the heat stability of lysozyme and the theory of water molecule clusters, the effect of structure-changed water on heat stability of lysozyme has been studied. The results obtained by differential scanning calorimetry (DSC) showed that the thermal denaturation temperature of lysozyme had been elevated 8.47 K through hydration of lysozyme with processed water whose structure had been changed so it was called "structured water" compared to ordinary water. The reason is that structured water changed the dipole moment of water molecules and easily formed cyclic water hexamer or cage-like water hexamer, so that the interacting force of maintaining three-dimensional conformation of lysozyme could be reinforced.展开更多
Family members solve not only their interests, but make provision for interests of other members of the family, too. The space for the control at a higher level is thus formed. Without notifying, individual members in...Family members solve not only their interests, but make provision for interests of other members of the family, too. The space for the control at a higher level is thus formed. Without notifying, individual members in the process of provision making proceed depending on general rules of the organisation of elements into higher structures, as they exist in all stable objects. This provision making has different forms, starting with the love and ending with an assisted coexistence. The understanding of the role of individual controlling structures allows to improve the functioning of the family. Similarly, as a regular discussion of its functioning in the family and perhaps, their controlled casting by some of partners, too. The submitted work describes roles and the control in the elementary family--in the childless coexistence of partners.展开更多
Carboxylmethyl cellulose(CMC) has become a commercial organic binder in agglomeration of iron ore concentrates. The relative molecular mass and degree of substitution(DS) of CMC have a large impact on its binding perf...Carboxylmethyl cellulose(CMC) has become a commercial organic binder in agglomeration of iron ore concentrates. The relative molecular mass and degree of substitution(DS) of CMC have a large impact on its binding performance. The interaction mechanism between CMC and iron ore particles was analyzed through Zeta potential measurements, adsorption measurements and infrared spectra. The results show that the interaction is chemical adsorption-oriented and the CMC's adsorption performance is related to the properties of CMC as well as the type of iron oxides. CMC has a greater affinity to Fe2O3 than Fe3O4, and CMC with higher relative molecular mass shows a higher adsorption isotherm. Pelletization of practical iron ore concentrates added with CMC further illustrates that CMC with higher relative molecular mass or DS exhibits a better binding performance, which is consistent with the results of adsorption tests.展开更多
In Saccharomyces cerevisiae, the essential gene CDC13 encodes a telomeric single-stranded DNA-binding protein that interacts with Stnlp and Tenlp genetically and physically, and is required for telomere end protection...In Saccharomyces cerevisiae, the essential gene CDC13 encodes a telomeric single-stranded DNA-binding protein that interacts with Stnlp and Tenlp genetically and physically, and is required for telomere end protection and telomere length control. The molecular mechanism by which Tenl participates in telomere length regulation and chromosome end protection remains elusive. In this work, we observed a weak interaction of Cdc13p and Tenlp in a gelfiltration analysis using purified recombinant Cdc13p and Tenlp. Tenlp itself exhibits a weak DNA-binding activity, but enhances the telomeric TG1-3 DNA-binding ability of Cdc13p. Cdc13p is communoprecipitated with Tenlp. In the mutant ten1-55 or ten1-66 cells, the impaired interaction between Tenlp and Cdc13p results in much longer telomeres, as well as a decreased association of Cdc13p with telomeric DNA. Consistently, the Ten1-55 and Ten1-66 mutant proteins fail to stimulate the telomeric DNA-binding activity of Cdc13p in vitro. These results suggest that Tenlp enhances the telomeric DNA-binding activity of Cdc13p to negatively regulate telomere length.展开更多
Ancylostoma anticoagulant peptide 5 (AcAP5) is a strong inhibitor of human coagulation factor Xa (FXa). The N-terminal residues (N40) of AcAP5 contains a domain that could combine with FXa. In order to determine...Ancylostoma anticoagulant peptide 5 (AcAP5) is a strong inhibitor of human coagulation factor Xa (FXa). The N-terminal residues (N40) of AcAP5 contains a domain that could combine with FXa. In order to determine whether N40 protein has FXa inhibitory effect, we cloned, expressed and purified the protein for activity evaluation. The DNA fragment coding N40 was amplified by PCR, cloned into pET-30a to construct recombinant plasmid pET30a-N40, and subsequently transformed into E. coli, BL21 (DE3). Expression of N40 was induced by isopropyl ~3-D-l-thiogalactopyranoside (IPTG), and the interest protein was identified by SDS-PAGE and purified using one-step nickel (Ni) affinity chromatography. Under the optimal expres- sion condition (0.05 mM IPTG for 6 h at 37 ℃), the purity of N40 reached 90%. We also evaluated the inhibition activity of N40 protein on FXa, finding the ICso was 4.58× 10 5 mol/L, This study suggests the N40 of AcAP5 could combine with FXa to inhibit FXa activity.展开更多
This paper explores the application of noncooperative game theory together with the concept of Nash equilibrium to the investigation of some basic problems on multi-scale structure, especially the meso-scale structure...This paper explores the application of noncooperative game theory together with the concept of Nash equilibrium to the investigation of some basic problems on multi-scale structure, especially the meso-scale structure in the multi-phase complex systems in chemical engineering. The basis of this work is the energy-minimization-multi-scale (EMMS) model proposed by Li and Kwauk (1994) and Li, et al. (2013) which identifies the multi-scale structure as a result of 'compromise-in-competition between dominant mechanisms' and tries to solve a multi-objective optimization problem. However, the existing methods often integrate it into a problem of single objective optimization, which does not clearly reflect the 'compromise-in-competition' mechanism and causes heavy computation burden as well as uncertainty in choosing suitable weighting factors. This paper will formulate the compromise in competition mechanism in EMMS model as a noncooperative game with constraints, and will describe the desired stable system state as a generalized Nash equilibrium. Then the authors will investigate the game theoretical approach for two typical systems in chemical engineering, the gas-solid fluidiza- tion (GSF) system and turbulent flow in pipe. Two different cases for generalized Nash equilibrinm in such systems will be well defined and distinguished. The generalize Nash equilibrium will be solved accurately for the GSF system and a feasible method will be given for turbulent flow in pipe. These results coincide with the existing computational results and show the feasibility of this approach, which overcomes the disadvantages of the existing methods and provides deep insight into the mechanisms of multi-scale structure in the multi-phase complex systems in chemical engineering.展开更多
Dipeptides are stereo-specifically involved in several biological functions that are challenging to separate enantiomerically. Elution order of enantiomers is an important issue in chiral chromatography. Amylose tris-...Dipeptides are stereo-specifically involved in several biological functions that are challenging to separate enantiomerically. Elution order of enantiomers is an important issue in chiral chromatography. Amylose tris-(3,5-dimethylphenylcarbamate) chiral stationary phase(CSP) is the best and most-widely-used CSP in chiral separations, but experimental data of enantiomeric separation of dipeptides on this CSP is lacking. Simulation studies were conducted to determine the order of elution and the chiral recognition mechanism of didpetides on this CSP. Results indicated that the docking energy of SR-enantiomers were higher than SS-antipodes. The range of docking energies for SR-enantiomers was -7.44 to -5.92 kcal/mol with CSP, but -7.15 to -5.87 kcal/mol for SS-stereoisomers. Therefore it is predicted that SS-enantiomer will elute first, followed by SR-antipode. Furthermore, hydrogen bondings, van der Waal's interactions and electrostatic interactions were observed among SR- and SSenantiomers and chiral grooves of CSP. The number of hydrogen bonds was one in each enantiomer binding except S-Ala-R-Tyr, which contained two hydrogen bonds. No hydrogen bond was found in S-Ala-R-Trp, S-Leu-S-Trp, and S-Leu-S-Tyr dipeptides bindings. The chiral recognition mechanisms dictate different strengths of stereoselective bindings of the enantiomers on CSP.展开更多
文摘Aptamers are a type of single-chain oligonucleotide that can combine with a specific target.Due to their simple preparation,easy modification,stable structure and reusability,aptamers have been widely applied as biochemical sensors for medicine,food safety and environmental monitoring.However,there is little research on aptamer-target binding mechanisms,which limits their application and development.Computational simulation has gained much attention for revealing aptamer-target binding mechanisms at the atomic level.This work summarizes the main simulation methods used in the mechanistic analysis of aptamer-target complexes,the characteristics of binding between aptamers and different targets(metal ions,small organic molecules,biomacromolecules,cells,bacteria and viruses),the types of aptamer-target interactions and the factors influencing their strength.It provides a reference for further use of simulations in understanding aptamer-target binding mechanisms.
基金Project(2007CB613704)supported by the National Basic Research Program of ChinaProject(50874100)supported by the National Natural Science Foundation of China
文摘In order to improve the mechanical properties and corrosion resistance of Mg alloys,the equal channel angular extrusion (ECAE)was employed to fabricate the Mg-5Gd-5Y/Mg-2Zn-1Gd(GW55/ZG21)laminated composites.After fabrication and annealing treatment,the microstructural evolution,phase constitution,microhardness,and bonding strength were investigated on the bonding interface zone of GW55/ZG21 laminated composites.The bonding interface zone of GW55/ZG21 laminated composites comprises a lot of Mg3(Y,Gd)2Zn3 particles along the bonding interface,some rod Mg24(Y,Gd)5 phases on GW55 side,and a precipitation free zone(PFZ)on ZG21 side.After annealing treatment,Mg3(Y,Gd)2Zn3 particles along the bonding interface increase, rod Mg24(Y,Gd)5 phases on GW55 side decrease,and PFZ is broadened.Meanwhile,the hardness on the bonding interface zone decreases and the bonding strength increases from 126 MPa to 162 MPa.
文摘Based on the mechanism of the effect of hydration on the heat stability of lysozyme and the theory of water molecule clusters, the effect of structure-changed water on heat stability of lysozyme has been studied. The results obtained by differential scanning calorimetry (DSC) showed that the thermal denaturation temperature of lysozyme had been elevated 8.47 K through hydration of lysozyme with processed water whose structure had been changed so it was called "structured water" compared to ordinary water. The reason is that structured water changed the dipole moment of water molecules and easily formed cyclic water hexamer or cage-like water hexamer, so that the interacting force of maintaining three-dimensional conformation of lysozyme could be reinforced.
文摘Family members solve not only their interests, but make provision for interests of other members of the family, too. The space for the control at a higher level is thus formed. Without notifying, individual members in the process of provision making proceed depending on general rules of the organisation of elements into higher structures, as they exist in all stable objects. This provision making has different forms, starting with the love and ending with an assisted coexistence. The understanding of the role of individual controlling structures allows to improve the functioning of the family. Similarly, as a regular discussion of its functioning in the family and perhaps, their controlled casting by some of partners, too. The submitted work describes roles and the control in the elementary family--in the childless coexistence of partners.
基金Project(2012zzts101)supported by the Fundamental Research Funds for the Central Universities,China
文摘Carboxylmethyl cellulose(CMC) has become a commercial organic binder in agglomeration of iron ore concentrates. The relative molecular mass and degree of substitution(DS) of CMC have a large impact on its binding performance. The interaction mechanism between CMC and iron ore particles was analyzed through Zeta potential measurements, adsorption measurements and infrared spectra. The results show that the interaction is chemical adsorption-oriented and the CMC's adsorption performance is related to the properties of CMC as well as the type of iron oxides. CMC has a greater affinity to Fe2O3 than Fe3O4, and CMC with higher relative molecular mass shows a higher adsorption isotherm. Pelletization of practical iron ore concentrates added with CMC further illustrates that CMC with higher relative molecular mass or DS exhibits a better binding performance, which is consistent with the results of adsorption tests.
基金Acknowledgments We thank Ms Lu-Xia Xu for the help in antibody preparation, and other members in the Zhou lab. This work is supported by a Chinese Academy of Sciences-Max Planck Society Professorship, and grants from the National Natural Science Foundation of China (NSFC 30630018) and the Ministry of Science and Technology of China (2007CB914502).
文摘In Saccharomyces cerevisiae, the essential gene CDC13 encodes a telomeric single-stranded DNA-binding protein that interacts with Stnlp and Tenlp genetically and physically, and is required for telomere end protection and telomere length control. The molecular mechanism by which Tenl participates in telomere length regulation and chromosome end protection remains elusive. In this work, we observed a weak interaction of Cdc13p and Tenlp in a gelfiltration analysis using purified recombinant Cdc13p and Tenlp. Tenlp itself exhibits a weak DNA-binding activity, but enhances the telomeric TG1-3 DNA-binding ability of Cdc13p. Cdc13p is communoprecipitated with Tenlp. In the mutant ten1-55 or ten1-66 cells, the impaired interaction between Tenlp and Cdc13p results in much longer telomeres, as well as a decreased association of Cdc13p with telomeric DNA. Consistently, the Ten1-55 and Ten1-66 mutant proteins fail to stimulate the telomeric DNA-binding activity of Cdc13p in vitro. These results suggest that Tenlp enhances the telomeric DNA-binding activity of Cdc13p to negatively regulate telomere length.
基金National Technology Graveness Special Purpose Fund (Grant No. 2009zx09301-010)
文摘Ancylostoma anticoagulant peptide 5 (AcAP5) is a strong inhibitor of human coagulation factor Xa (FXa). The N-terminal residues (N40) of AcAP5 contains a domain that could combine with FXa. In order to determine whether N40 protein has FXa inhibitory effect, we cloned, expressed and purified the protein for activity evaluation. The DNA fragment coding N40 was amplified by PCR, cloned into pET-30a to construct recombinant plasmid pET30a-N40, and subsequently transformed into E. coli, BL21 (DE3). Expression of N40 was induced by isopropyl ~3-D-l-thiogalactopyranoside (IPTG), and the interest protein was identified by SDS-PAGE and purified using one-step nickel (Ni) affinity chromatography. Under the optimal expres- sion condition (0.05 mM IPTG for 6 h at 37 ℃), the purity of N40 reached 90%. We also evaluated the inhibition activity of N40 protein on FXa, finding the ICso was 4.58× 10 5 mol/L, This study suggests the N40 of AcAP5 could combine with FXa to inhibit FXa activity.
基金supported by the National Natural Science Foundation of China under Grant Nos.11688101,91634203,61304159by the National Center for Mathematics and Interdisciplinary Sciences
文摘This paper explores the application of noncooperative game theory together with the concept of Nash equilibrium to the investigation of some basic problems on multi-scale structure, especially the meso-scale structure in the multi-phase complex systems in chemical engineering. The basis of this work is the energy-minimization-multi-scale (EMMS) model proposed by Li and Kwauk (1994) and Li, et al. (2013) which identifies the multi-scale structure as a result of 'compromise-in-competition between dominant mechanisms' and tries to solve a multi-objective optimization problem. However, the existing methods often integrate it into a problem of single objective optimization, which does not clearly reflect the 'compromise-in-competition' mechanism and causes heavy computation burden as well as uncertainty in choosing suitable weighting factors. This paper will formulate the compromise in competition mechanism in EMMS model as a noncooperative game with constraints, and will describe the desired stable system state as a generalized Nash equilibrium. Then the authors will investigate the game theoretical approach for two typical systems in chemical engineering, the gas-solid fluidiza- tion (GSF) system and turbulent flow in pipe. Two different cases for generalized Nash equilibrinm in such systems will be well defined and distinguished. The generalize Nash equilibrium will be solved accurately for the GSF system and a feasible method will be given for turbulent flow in pipe. These results coincide with the existing computational results and show the feasibility of this approach, which overcomes the disadvantages of the existing methods and provides deep insight into the mechanisms of multi-scale structure in the multi-phase complex systems in chemical engineering.
基金the Department of Science and Technology, New Delhi, India (DST/INT/RFBR/P-147)the Russian Foundation of Basic Research, Russia (RFBR 13-03-92692) for financial assistance
文摘Dipeptides are stereo-specifically involved in several biological functions that are challenging to separate enantiomerically. Elution order of enantiomers is an important issue in chiral chromatography. Amylose tris-(3,5-dimethylphenylcarbamate) chiral stationary phase(CSP) is the best and most-widely-used CSP in chiral separations, but experimental data of enantiomeric separation of dipeptides on this CSP is lacking. Simulation studies were conducted to determine the order of elution and the chiral recognition mechanism of didpetides on this CSP. Results indicated that the docking energy of SR-enantiomers were higher than SS-antipodes. The range of docking energies for SR-enantiomers was -7.44 to -5.92 kcal/mol with CSP, but -7.15 to -5.87 kcal/mol for SS-stereoisomers. Therefore it is predicted that SS-enantiomer will elute first, followed by SR-antipode. Furthermore, hydrogen bondings, van der Waal's interactions and electrostatic interactions were observed among SR- and SSenantiomers and chiral grooves of CSP. The number of hydrogen bonds was one in each enantiomer binding except S-Ala-R-Tyr, which contained two hydrogen bonds. No hydrogen bond was found in S-Ala-R-Trp, S-Leu-S-Trp, and S-Leu-S-Tyr dipeptides bindings. The chiral recognition mechanisms dictate different strengths of stereoselective bindings of the enantiomers on CSP.