By transforming the original interstage compression cooling system of nitrogen fertilizer plant and adding lithium bromide refrigerator, the paper designs a new compressor interstage cooling system which leads interst...By transforming the original interstage compression cooling system of nitrogen fertilizer plant and adding lithium bromide refrigerator, the paper designs a new compressor interstage cooling system which leads interstage heat in lithium bromide refrigerator and uses the obtained cooling capacity to reduce the temperature of compressed gas. And aspen is used to simulate the new process. Lastly, the paper makes economical and feasible conclusion.展开更多
The pulse tube refrigerator (PTR) is a promising small-scale cryocooler. This paper first briefly introduces the history of the pulse tube refrigerator. It has pointed out that technology improvements and theoretica...The pulse tube refrigerator (PTR) is a promising small-scale cryocooler. This paper first briefly introduces the history of the pulse tube refrigerator. It has pointed out that technology improvements and theoretical developments of the pulse tube refrig- erator closely relate with the internal streaming effects. Then the discovering history and classification of the streaming or DC (direct current) flow effect are summarized. It proposes for the first time that the physical significance of the streaming con- tains the driving mechanisms and the transport mechanisms. It demonstrates that the driving mechanisms are the asymmetry of fluid flow and temperature while the transport mechanisms are a loop or vorticity, which transmits nonlinear dissipations. The important advancements have been made over the past two decades all over the world in research of streaming of the pulse tube refrigerator including Gedeon DC flow, Rayleigb streaming, the third type of DC flow and the regenerator circulation. With regard to Gedeon DC flow, theoretical and experimental analyses have been made and different suppression methods are summarized. In the aspect of Rayleigh streaming, it mainly focuses on the analytical solution of the second-order mass flow and the research of tapered pulse tubes. In particular, limited research on the third type of DC flow and regenerator circulation is presented. The experimental measurement techniques of streaming also are summarized. Finally, this paper briefly discusses the key scientific and technical issues of the current research, and foretells the future development trends of streaming research in PTR.展开更多
文摘By transforming the original interstage compression cooling system of nitrogen fertilizer plant and adding lithium bromide refrigerator, the paper designs a new compressor interstage cooling system which leads interstage heat in lithium bromide refrigerator and uses the obtained cooling capacity to reduce the temperature of compressed gas. And aspen is used to simulate the new process. Lastly, the paper makes economical and feasible conclusion.
基金supported by the National Natural Science Foundation of China(Grant No.51176198)
文摘The pulse tube refrigerator (PTR) is a promising small-scale cryocooler. This paper first briefly introduces the history of the pulse tube refrigerator. It has pointed out that technology improvements and theoretical developments of the pulse tube refrig- erator closely relate with the internal streaming effects. Then the discovering history and classification of the streaming or DC (direct current) flow effect are summarized. It proposes for the first time that the physical significance of the streaming con- tains the driving mechanisms and the transport mechanisms. It demonstrates that the driving mechanisms are the asymmetry of fluid flow and temperature while the transport mechanisms are a loop or vorticity, which transmits nonlinear dissipations. The important advancements have been made over the past two decades all over the world in research of streaming of the pulse tube refrigerator including Gedeon DC flow, Rayleigb streaming, the third type of DC flow and the regenerator circulation. With regard to Gedeon DC flow, theoretical and experimental analyses have been made and different suppression methods are summarized. In the aspect of Rayleigh streaming, it mainly focuses on the analytical solution of the second-order mass flow and the research of tapered pulse tubes. In particular, limited research on the third type of DC flow and regenerator circulation is presented. The experimental measurement techniques of streaming also are summarized. Finally, this paper briefly discusses the key scientific and technical issues of the current research, and foretells the future development trends of streaming research in PTR.