In recent years the microchannel heat exchangers have been applied in a great variety of technical areas. One of the problems, which exist in the microcharmel technology is the flow instabilities, including fluid mald...In recent years the microchannel heat exchangers have been applied in a great variety of technical areas. One of the problems, which exist in the microcharmel technology is the flow instabilities, including fluid maldistribution in the microcharmels array for the case of two-phase flow especially in micro-evaporators. One of the ways to solve this problem is flow rate control at the microcharmel inlet. However, due to very small inlet to the array of microchannels the classic flow restriction device (with moving mechanical parts) will be difficult to apply. The new device for the flow rate control based on the dielectrophoresis force was presented in the paper. Experimet^tal research results of using this device for refrigerant flow control was presented in the paper. The experimentally obtained relationships between applied voltages and frequencies and flow rates were presented showing opportunity for applying such method for refrigerants and other volatile fluids.展开更多
基金supported by Polish Ministry of Science and Higher Education within the Project No.3969/T02/ 2009/36
文摘In recent years the microchannel heat exchangers have been applied in a great variety of technical areas. One of the problems, which exist in the microcharmel technology is the flow instabilities, including fluid maldistribution in the microcharmels array for the case of two-phase flow especially in micro-evaporators. One of the ways to solve this problem is flow rate control at the microcharmel inlet. However, due to very small inlet to the array of microchannels the classic flow restriction device (with moving mechanical parts) will be difficult to apply. The new device for the flow rate control based on the dielectrophoresis force was presented in the paper. Experimet^tal research results of using this device for refrigerant flow control was presented in the paper. The experimentally obtained relationships between applied voltages and frequencies and flow rates were presented showing opportunity for applying such method for refrigerants and other volatile fluids.