In low-temperature processes, there are interactions between heat exchanger network(HEN) and refrigeration system. The modification on HEN of the chilling train for increasing energy recovery does not always coordinat...In low-temperature processes, there are interactions between heat exchanger network(HEN) and refrigeration system. The modification on HEN of the chilling train for increasing energy recovery does not always coordinate with the minimum shaft work consumption of the corresponding refrigeration system. In this paper, a systematic approach for optimizing low-temperature system is presented through mathematical method and exergy analysis. The possibility of "pockets", which appears as right nose section in the grand composite curve(EGCC) of the process, is first optimized. The EGCC with the pockets cutting down is designed as a separate part. A case study is used to illustrate the application of the approach for a HEN of a chilling train with propylene and ethylene refrigerant system in an ethylene production process.展开更多
Waste heat recovery(WHR)is one of the most useful ways to improve the efficiency of internal combustion engines,and an electricity-cooling cogeneration system(ECCS)based on Rankin-absorption refrigeration combined cyc...Waste heat recovery(WHR)is one of the most useful ways to improve the efficiency of internal combustion engines,and an electricity-cooling cogeneration system(ECCS)based on Rankin-absorption refrigeration combined cycle for the WHR of gaseous fuel engines is proposed in the paper.This system can avoid wasting the heat in condenser so that the efficiency of the whole WHR system improves,but the condensing temperature of Rankin cycle(RC)must increase in order to use absorption refrigeration system,which leads to the decrease of RC output power.Therefore,the relationship between the profit of absorption refrigeration system and the loss of RC in this combined system is the mainly studied content in the paper.Because the energy quality of cooling and electricity are different,cooling power in absorption refrigeration is converted to corresponding electrical power consumed by electric cooling system,which is defined as equivalent electrical power.With this method,the effects of some important operation parameters on the performance of the ECCS are researched,and the equivalent efficiency,exergy efficiency and primary energy rate are compared in the paper.展开更多
This paper describes a new micro-combined cooling, heating and power (CCHP) system, which is especially suitable for domestic and light commercial applications. It mainly consists of a natural gas-fired internal com...This paper describes a new micro-combined cooling, heating and power (CCHP) system, which is especially suitable for domestic and light commercial applications. It mainly consists of a natural gas-fired internal combustion engine, a silica gel-water adsorption chiller and other heat recovery units. In order to study the energy efficiency and economic feasibility, an experimental investigation has been carried out. The experimental system has a rated electricity power of 12 kW, a rated cooling capacity of 9 kW and a rated heating capacity of 28 kW. Evaluation and analysis of the system are discussed in detail. The testing results show that the energy efficiency of the overall system depends on different modes. The overall thermal and electrical efficiency is over 70%. Higher heat load supplied causes higher efficiency of the system. Economic evaluation shows that the micro-CCHP system enjoys a small capital cost and short payback period, which is easily accepted by customers. At current natural gas price of 1.9 RMB/m^3 (nominal condition) and electric price of 0.754 RMB/(kW.h), the total capital cost is only 90 000 RMB with a payback period of 3.21 years.展开更多
基金Supported by the National Basic Research Program of China(2010CB720500)the National Natural Science Foundation(21176178)
文摘In low-temperature processes, there are interactions between heat exchanger network(HEN) and refrigeration system. The modification on HEN of the chilling train for increasing energy recovery does not always coordinate with the minimum shaft work consumption of the corresponding refrigeration system. In this paper, a systematic approach for optimizing low-temperature system is presented through mathematical method and exergy analysis. The possibility of "pockets", which appears as right nose section in the grand composite curve(EGCC) of the process, is first optimized. The EGCC with the pockets cutting down is designed as a separate part. A case study is used to illustrate the application of the approach for a HEN of a chilling train with propylene and ethylene refrigerant system in an ethylene production process.
基金supported by the National Basic Research Program of China("973"Project)(Gran No.2011CB707201)
文摘Waste heat recovery(WHR)is one of the most useful ways to improve the efficiency of internal combustion engines,and an electricity-cooling cogeneration system(ECCS)based on Rankin-absorption refrigeration combined cycle for the WHR of gaseous fuel engines is proposed in the paper.This system can avoid wasting the heat in condenser so that the efficiency of the whole WHR system improves,but the condensing temperature of Rankin cycle(RC)must increase in order to use absorption refrigeration system,which leads to the decrease of RC output power.Therefore,the relationship between the profit of absorption refrigeration system and the loss of RC in this combined system is the mainly studied content in the paper.Because the energy quality of cooling and electricity are different,cooling power in absorption refrigeration is converted to corresponding electrical power consumed by electric cooling system,which is defined as equivalent electrical power.With this method,the effects of some important operation parameters on the performance of the ECCS are researched,and the equivalent efficiency,exergy efficiency and primary energy rate are compared in the paper.
基金the State Key Fundamental Research Program (No. G2000026309)the National Science Fund for Distinguished Young Scholars of China (No. 50225621)the Research Fund for the Doctoral Program of Higher Education (No. 20040248055)
文摘This paper describes a new micro-combined cooling, heating and power (CCHP) system, which is especially suitable for domestic and light commercial applications. It mainly consists of a natural gas-fired internal combustion engine, a silica gel-water adsorption chiller and other heat recovery units. In order to study the energy efficiency and economic feasibility, an experimental investigation has been carried out. The experimental system has a rated electricity power of 12 kW, a rated cooling capacity of 9 kW and a rated heating capacity of 28 kW. Evaluation and analysis of the system are discussed in detail. The testing results show that the energy efficiency of the overall system depends on different modes. The overall thermal and electrical efficiency is over 70%. Higher heat load supplied causes higher efficiency of the system. Economic evaluation shows that the micro-CCHP system enjoys a small capital cost and short payback period, which is easily accepted by customers. At current natural gas price of 1.9 RMB/m^3 (nominal condition) and electric price of 0.754 RMB/(kW.h), the total capital cost is only 90 000 RMB with a payback period of 3.21 years.