A kind of active vibration control method was presented through optimal design of driving load of multi-body system with quick startup and brake. Dynamical equation of multi-body system with quick startup and brake wa...A kind of active vibration control method was presented through optimal design of driving load of multi-body system with quick startup and brake. Dynamical equation of multi-body system with quick startup and brake was built, and mathematical model of representing vibration control was also set up according to the moving process from startup to brake. Then optimization vibration control model of system driving load was founded by applying theory of optimization control, which takes rigid body moving variable of braking moment as the known condition, and vibration control equation of multi-body system with quick startup and brake was converted into boundary value problem of differential equation. The transient control algorithm of vibration was put forward, which is the analysis basis for the further research. Theoretical analysis and calculation of numerical examples show that the optimal design method for the multi-body system driving load can decrease the vibration of system with duplication.展开更多
Aiming at the issue of yaw and rollover stability control for off-road vehicles with non-pneumatic mechanical elastic wheel(MEW),an integrated control system based on fuzzy differential braking is developed.By simplif...Aiming at the issue of yaw and rollover stability control for off-road vehicles with non-pneumatic mechanical elastic wheel(MEW),an integrated control system based on fuzzy differential braking is developed.By simplifying the structure of the MEW,a corresponding fitting brush tire model is constructed and its longitudinal and lateral tire force expressions are set up,respectively.Then,a nonlinear vehicle simulation model with MEW is established to validate the proposed control scheme based on Carsim.The designed yaw and rollover control system is a two-level structure with the upper additional moment controller,which utilizes a predictive load transfer ratio(PLTR)as the rollover index.In order to design the upper integrated control algorithm,fuzzy proportional-integral-derivative(PID)is adopted to coordinate the yaw and rollover control,simultaneously.And the lower control allocator realizes the additional moment to the vehicle by differential braking.Finally,a Carsim-simulink co-simulation model is constructed,and simulation results show that the integrated control system could improve the vehicle yaw and roll stability,and prevent rollover happening.展开更多
An investigation on the neural networks based active vibration control of flexible redundant manipulators was conducted. The smart links of the manipulator were synthesized with the flexible links to which were attach...An investigation on the neural networks based active vibration control of flexible redundant manipulators was conducted. The smart links of the manipulator were synthesized with the flexible links to which were attached piezoceramic actuators and strain gauge sensors. A nonlinear adaptive control strategy named neural networks based indirect adaptive control (NNIAC) was employed to improve the dynamic performance of the manipulator. The mathematical model of the 4-layered dynamic recurrent neural networks (DRNN) was introduced. The neuro-identifier and the neuro-controller featuring the DRNN topology were designed off line so as to enhance the initial robustness of the NNIAC. By adjusting the neuro-identifier and the neuro-controller alternatively, the manipulator was controlled on line for achieving the desired dynamic performance. Finally, a planar 3R redundant manipulator with one smart link was utilized as an illustrative example. The simulation results proved the validity of the control strategy.展开更多
While positive feedback exists in an active vibration control system, it may cause instability of the whole system. To solve this problem, a feedforward adaptive controller is proposed based on the Fihered-U recursive...While positive feedback exists in an active vibration control system, it may cause instability of the whole system. To solve this problem, a feedforward adaptive controller is proposed based on the Fihered-U recursive least square (FURLS) algorithm. Algorithm development process is presented in this paper. Real time active vibration control experimental tests were done. The experiment resuits show that the active control algorithm proposed in this paper has good control performance for both narrow band disturbances and broad band disturbances.展开更多
An analytical study was presented on active control of sound transmission into a vibro-acoustic enclosure comprising two flexible plates. Two types of actuators were used, i.e. acoustic actuator and distributed lead z...An analytical study was presented on active control of sound transmission into a vibro-acoustic enclosure comprising two flexible plates. Two types of actuators were used, i.e. acoustic actuator and distributed lead zirconate titanate piezoelectric (PZT) actuator instead of point force actuator. Using the modal acoustic transfer impedance-mobility matrices, the excitation and interaction in the coupled sound transmission system can be described with clear physical significance. With the control system designed to globally reduce the sound field, different control system configurations were considered, including the structural actuator on the incident plate, actuator on the receiving plate, acoustic actuator on the cavity, and their combinations. The effectiveness and performance of the control strategy corresponding to each system configuration were compared and discussed. The role and control mechanism of each type of actuator were of particular interest. It was shown that the incident plate actuator is effective in controlling the cavity-dominated modes and the structural modes dominated by the incident plate and receiving plate. Two main control mechanisms are involved in this control configuration, i.e., modal suppressing and modal rearrangement. For control system configuration with only acoustic actuator in the enclosure, the mechanism involved in this arrangement is purely modal suppression. Desirable placements of structural actuators in terms of total potential energy reduction were also discussed.展开更多
Because of its light weight, broadband, and adaptable properties, smart material has been widely applied in the active vibration control (AVC) of flexible structures. Based on a firstorder shear deformation theory, ...Because of its light weight, broadband, and adaptable properties, smart material has been widely applied in the active vibration control (AVC) of flexible structures. Based on a firstorder shear deformation theory, by coupling the electrical and mechanical operation, a 4-node quadrilateral piezoelectric composite element with 24 degrees of freedom for generalized displacements and one electrical potential degree of freedom per piezoelectric layer was derived. Dynamic characteristics of a beam with discontinuously distributed piezoelectric sensors and actuators were presented. A linear quadratic regulator (LQR) feedback controller was designed to suppress the vibration of the beam in the state space using the high precise direct (HPD) integration method.展开更多
A semi-active magneto-rheological (MR) damper was experimentally investigated and compared to an original equipment manufacturer (OEM) damper for a passenger vehicle, by using a quarter car models. A full-scale tw...A semi-active magneto-rheological (MR) damper was experimentally investigated and compared to an original equipment manufacturer (OEM) damper for a passenger vehicle, by using a quarter car models. A full-scale two-degree-of-freedom quarter car experimental set-up was constructed to study the vehicle suspension. On-off skyhook controller and Fuzzy-Lyapunov skyhook controller (FLSC) were employed to control the input current for MR damper so as to achieve the desired damping force. Tests were done to evaluate the ability of MR damper for controlling vehicle vibration. Test results show that the semi-active MR vehicle suspension vibration control system is feasible. In comparison with OEM damper, on-off and FLSC controlled MR dampers can effectively reduce the acceleration of vehicle sprtmg mass by about 15% and 24%, respectively.展开更多
This paper analyzes the physical meaning of the active and reactive power flow in the finite L-shaped beams and studies the active vibration control of the structures based on the active and reactive power flow.The tr...This paper analyzes the physical meaning of the active and reactive power flow in the finite L-shaped beams and studies the active vibration control of the structures based on the active and reactive power flow.The traveling wave approach is used to calculate the structural dynamic responses.Because the error of control force is inevitable in practical applications,the effects of the error of control force on the control results are studied.The study indicates that the error of control force has pronounced influence on the control results of the acceleration and reactive power flow.It is obvious that the reactive power flow can represent the vibration strength component of the complex intensity,and the active power flow strongly depends on the structural damping of the finite beams.展开更多
In this paper, combining the transfer matrix method and the finite element method, the modified finite element transfer matrix method is presented for high efficient dynamic modeling of laminated plates. Then, by cons...In this paper, combining the transfer matrix method and the finite element method, the modified finite element transfer matrix method is presented for high efficient dynamic modeling of laminated plates. Then, by constructing the modal filter and the disturbance force observer, and using the feedback and feedforward approaches, the H ∞ independent modal space control strategy is designed for active vibration control of laminate plates subjected to arbitrary, immeasurable disturbance forces. Compared with ordinary dynamic modeling and control methods of laminated plate structures, the proposed method has the low memory requirement, high computational efficiency and robust control performance. Formulations as well as some numerical examples are given to validate the method and the control performance.展开更多
Actuators are one of the key points for the development of active flow control technology.Efficient methods of high speed flow control can provide enhanced propulsive efficiency and at the same time enable safe and ma...Actuators are one of the key points for the development of active flow control technology.Efficient methods of high speed flow control can provide enhanced propulsive efficiency and at the same time enable safe and maneuverable high speed flight.The development of high speed flight technology promotes the emergence of novel and robust actuators.This review introduces the state of the art in the development of actuators that can be used in high speed active flow control.The classification and different operation criteria of the actuators are discussed.The specifications,mechanisms and applications of various popular actuator types including fluidic,mechanical,and plasma actuators are described.Based on the realistic need of high speed flow control and the existing results of actuators,a new actuator design method is proposed.At last,the merits and drawbacks of the actuators are summarized and some suggestions on the development of active flow control technology are put forward.展开更多
文摘A kind of active vibration control method was presented through optimal design of driving load of multi-body system with quick startup and brake. Dynamical equation of multi-body system with quick startup and brake was built, and mathematical model of representing vibration control was also set up according to the moving process from startup to brake. Then optimization vibration control model of system driving load was founded by applying theory of optimization control, which takes rigid body moving variable of braking moment as the known condition, and vibration control equation of multi-body system with quick startup and brake was converted into boundary value problem of differential equation. The transient control algorithm of vibration was put forward, which is the analysis basis for the further research. Theoretical analysis and calculation of numerical examples show that the optimal design method for the multi-body system driving load can decrease the vibration of system with duplication.
基金Project(11672127)supported by the National Natural Science Foundation of ChinaProject(NHAl3002)supported by the Major Exploration Project of the General Armaments Department of China+1 种基金Project(KYCX17_0240)supported by the Postgraduate Research&Practice Innovation Program of Jiangsu Province,ChinaProjects(NP2016412,NP2018403,NT2018002)supported by the Fundamental Research Funds for the Central Universities,China
文摘Aiming at the issue of yaw and rollover stability control for off-road vehicles with non-pneumatic mechanical elastic wheel(MEW),an integrated control system based on fuzzy differential braking is developed.By simplifying the structure of the MEW,a corresponding fitting brush tire model is constructed and its longitudinal and lateral tire force expressions are set up,respectively.Then,a nonlinear vehicle simulation model with MEW is established to validate the proposed control scheme based on Carsim.The designed yaw and rollover control system is a two-level structure with the upper additional moment controller,which utilizes a predictive load transfer ratio(PLTR)as the rollover index.In order to design the upper integrated control algorithm,fuzzy proportional-integral-derivative(PID)is adopted to coordinate the yaw and rollover control,simultaneously.And the lower control allocator realizes the additional moment to the vehicle by differential braking.Finally,a Carsim-simulink co-simulation model is constructed,and simulation results show that the integrated control system could improve the vehicle yaw and roll stability,and prevent rollover happening.
基金Supported by National Natural Science Foundation of China(No.59975001 and 50205019).
文摘An investigation on the neural networks based active vibration control of flexible redundant manipulators was conducted. The smart links of the manipulator were synthesized with the flexible links to which were attached piezoceramic actuators and strain gauge sensors. A nonlinear adaptive control strategy named neural networks based indirect adaptive control (NNIAC) was employed to improve the dynamic performance of the manipulator. The mathematical model of the 4-layered dynamic recurrent neural networks (DRNN) was introduced. The neuro-identifier and the neuro-controller featuring the DRNN topology were designed off line so as to enhance the initial robustness of the NNIAC. By adjusting the neuro-identifier and the neuro-controller alternatively, the manipulator was controlled on line for achieving the desired dynamic performance. Finally, a planar 3R redundant manipulator with one smart link was utilized as an illustrative example. The simulation results proved the validity of the control strategy.
基金Supported by the National Natural Science Foundation of China(No.90716027,51175319)
文摘While positive feedback exists in an active vibration control system, it may cause instability of the whole system. To solve this problem, a feedforward adaptive controller is proposed based on the Fihered-U recursive least square (FURLS) algorithm. Algorithm development process is presented in this paper. Real time active vibration control experimental tests were done. The experiment resuits show that the active control algorithm proposed in this paper has good control performance for both narrow band disturbances and broad band disturbances.
基金Supported by the National Natural Science Foundation of China (No.10802024)Research Fund for the Doctoral Program of Higher Education of China (No. 200802171009)+1 种基金Innovative Talents Fund of Harbin (No.2009RFQXG211)Fundamental Research Fund of HEU (No. HEUFT08003)
文摘An analytical study was presented on active control of sound transmission into a vibro-acoustic enclosure comprising two flexible plates. Two types of actuators were used, i.e. acoustic actuator and distributed lead zirconate titanate piezoelectric (PZT) actuator instead of point force actuator. Using the modal acoustic transfer impedance-mobility matrices, the excitation and interaction in the coupled sound transmission system can be described with clear physical significance. With the control system designed to globally reduce the sound field, different control system configurations were considered, including the structural actuator on the incident plate, actuator on the receiving plate, acoustic actuator on the cavity, and their combinations. The effectiveness and performance of the control strategy corresponding to each system configuration were compared and discussed. The role and control mechanism of each type of actuator were of particular interest. It was shown that the incident plate actuator is effective in controlling the cavity-dominated modes and the structural modes dominated by the incident plate and receiving plate. Two main control mechanisms are involved in this control configuration, i.e., modal suppressing and modal rearrangement. For control system configuration with only acoustic actuator in the enclosure, the mechanism involved in this arrangement is purely modal suppression. Desirable placements of structural actuators in terms of total potential energy reduction were also discussed.
基金Supported by the National Natural Science Foundation of China (51079027).
文摘Because of its light weight, broadband, and adaptable properties, smart material has been widely applied in the active vibration control (AVC) of flexible structures. Based on a firstorder shear deformation theory, by coupling the electrical and mechanical operation, a 4-node quadrilateral piezoelectric composite element with 24 degrees of freedom for generalized displacements and one electrical potential degree of freedom per piezoelectric layer was derived. Dynamic characteristics of a beam with discontinuously distributed piezoelectric sensors and actuators were presented. A linear quadratic regulator (LQR) feedback controller was designed to suppress the vibration of the beam in the state space using the high precise direct (HPD) integration method.
基金Project(51175265) supported by the National Natural Science Foundation of ChinaProject(CX10B_114Z) supported by Jiangsu College Graduate Research and Innovation Program,China+1 种基金Project(BK2008415) supported by the Natural Science Foundation of Jiangsu Province,ChinaProject(Y1110313) supported by the Natural Science Foundation of Zhejiang Province,China
文摘A semi-active magneto-rheological (MR) damper was experimentally investigated and compared to an original equipment manufacturer (OEM) damper for a passenger vehicle, by using a quarter car models. A full-scale two-degree-of-freedom quarter car experimental set-up was constructed to study the vehicle suspension. On-off skyhook controller and Fuzzy-Lyapunov skyhook controller (FLSC) were employed to control the input current for MR damper so as to achieve the desired damping force. Tests were done to evaluate the ability of MR damper for controlling vehicle vibration. Test results show that the semi-active MR vehicle suspension vibration control system is feasible. In comparison with OEM damper, on-off and FLSC controlled MR dampers can effectively reduce the acceleration of vehicle sprtmg mass by about 15% and 24%, respectively.
基金supported by the National Natural Science Foundation of China (Grant Nos.10672017, 10632020 and 11002045)
文摘This paper analyzes the physical meaning of the active and reactive power flow in the finite L-shaped beams and studies the active vibration control of the structures based on the active and reactive power flow.The traveling wave approach is used to calculate the structural dynamic responses.Because the error of control force is inevitable in practical applications,the effects of the error of control force on the control results are studied.The study indicates that the error of control force has pronounced influence on the control results of the acceleration and reactive power flow.It is obvious that the reactive power flow can represent the vibration strength component of the complex intensity,and the active power flow strongly depends on the structural damping of the finite beams.
基金supported by the National Natural Science Foundation of China (Grant No. 10902051)the Natural Science Foundation of Jiangsu Province (Grant No. BK2008046)
文摘In this paper, combining the transfer matrix method and the finite element method, the modified finite element transfer matrix method is presented for high efficient dynamic modeling of laminated plates. Then, by constructing the modal filter and the disturbance force observer, and using the feedback and feedforward approaches, the H ∞ independent modal space control strategy is designed for active vibration control of laminate plates subjected to arbitrary, immeasurable disturbance forces. Compared with ordinary dynamic modeling and control methods of laminated plate structures, the proposed method has the low memory requirement, high computational efficiency and robust control performance. Formulations as well as some numerical examples are given to validate the method and the control performance.
基金supported by the National Natural Science Foundation of China (Grant No. 11002161)the Foundation for the Author of National Excellent Doctor Dissertation of China (Grant No. 201058)the Specialized Research Fund for the Doctor Program of Higher Education of China (Grant No. 20104307110007)
文摘Actuators are one of the key points for the development of active flow control technology.Efficient methods of high speed flow control can provide enhanced propulsive efficiency and at the same time enable safe and maneuverable high speed flight.The development of high speed flight technology promotes the emergence of novel and robust actuators.This review introduces the state of the art in the development of actuators that can be used in high speed active flow control.The classification and different operation criteria of the actuators are discussed.The specifications,mechanisms and applications of various popular actuator types including fluidic,mechanical,and plasma actuators are described.Based on the realistic need of high speed flow control and the existing results of actuators,a new actuator design method is proposed.At last,the merits and drawbacks of the actuators are summarized and some suggestions on the development of active flow control technology are put forward.