A mathematical model combined projection algorithm with phase-field method was applied. The adaptive finite element method was adopted to solve the model based on the non-uniform grid, and the behavior of dendritic gr...A mathematical model combined projection algorithm with phase-field method was applied. The adaptive finite element method was adopted to solve the model based on the non-uniform grid, and the behavior of dendritic growth was simulated from undercooled nickel melt under the forced flow. The simulation results show that the asymmetry behavior of the dendritic growth is caused by the forced flow. When the flow velocity is less than the critical value, the asymmetry of dendrite is little influenced by the forced flow. Once the flow velocity reaches or exceeds the critical value, the controlling factor of dendrite growth gradually changes from thermal diffusion to convection. With the increase of the flow velocity, the deflection angle towards upstream direction of the primary dendrite stem becomes larger. The effect of the dendrite growth on the flow field of the melt is apparent. With the increase of the dendrite size, the vortex is present in the downstream regions, and the vortex region is gradually enlarged. Dendrite tips appear to remelt. In addition, the adaptive finite element method can reduce CPU running time by one order of magnitude compared with uniform grid method, and the speed-up ratio is proportional to the size of computational domain.展开更多
In order to study the relationship between pavement friction management criteria and braking distance requirements of road geometric design, an approach for determining the braking distance considering pavement fricti...In order to study the relationship between pavement friction management criteria and braking distance requirements of road geometric design, an approach for determining the braking distance considering pavement frictional properties is proposed. A finite element model (FEM) of a rolling tire under steady state is established based on theoretical hydrodynamics and mechanics principles, in which factors, including tire type, water film thickness, pavement surface properties, and vehicle speed, are considered. With the FEM, braking distances under different operating conditions are calculated. Furthermore, the allowable water film thickness is determined by comparing braking distances calculated with friction management criteria and that required by road geometric design. The results show that the braking distance is affected by the above operating conditions. As a result, it is necessary to maintain consistency between geometric design braking distance requirements and pavement friction management to achieve safe road operations.展开更多
基金Projects(51161011,11364024)supported by the National Natural Science Foundation of ChinaProject(1204GKCA065)supported by the Key Technology R&D Program of Gansu Province,China+1 种基金Project(201210)supported by the Fundamental Research Funds for the Universities of Gansu Province,ChinaProject(J201304)supported by the Funds for Distinguished Young Scientists of Lanzhou University of Technology,China
文摘A mathematical model combined projection algorithm with phase-field method was applied. The adaptive finite element method was adopted to solve the model based on the non-uniform grid, and the behavior of dendritic growth was simulated from undercooled nickel melt under the forced flow. The simulation results show that the asymmetry behavior of the dendritic growth is caused by the forced flow. When the flow velocity is less than the critical value, the asymmetry of dendrite is little influenced by the forced flow. Once the flow velocity reaches or exceeds the critical value, the controlling factor of dendrite growth gradually changes from thermal diffusion to convection. With the increase of the flow velocity, the deflection angle towards upstream direction of the primary dendrite stem becomes larger. The effect of the dendrite growth on the flow field of the melt is apparent. With the increase of the dendrite size, the vortex is present in the downstream regions, and the vortex region is gradually enlarged. Dendrite tips appear to remelt. In addition, the adaptive finite element method can reduce CPU running time by one order of magnitude compared with uniform grid method, and the speed-up ratio is proportional to the size of computational domain.
基金The Research and Innovation Foundation for Graduate Students in Jiangsu Province(No.CX10B_070Z)
文摘In order to study the relationship between pavement friction management criteria and braking distance requirements of road geometric design, an approach for determining the braking distance considering pavement frictional properties is proposed. A finite element model (FEM) of a rolling tire under steady state is established based on theoretical hydrodynamics and mechanics principles, in which factors, including tire type, water film thickness, pavement surface properties, and vehicle speed, are considered. With the FEM, braking distances under different operating conditions are calculated. Furthermore, the allowable water film thickness is determined by comparing braking distances calculated with friction management criteria and that required by road geometric design. The results show that the braking distance is affected by the above operating conditions. As a result, it is necessary to maintain consistency between geometric design braking distance requirements and pavement friction management to achieve safe road operations.