A new semi-active suspension control strategy through mixed H2/H∞ robust technique was developed due to its flexibility and robustness to model uncertainties.A full car model with seven degrees of freedom was establi...A new semi-active suspension control strategy through mixed H2/H∞ robust technique was developed due to its flexibility and robustness to model uncertainties.A full car model with seven degrees of freedom was established to demonstrate the effectiveness of the new control approach.Magneto-rheological(MR) dampers were designed,manufactured and characterized as available semi-active actuators in the developed semi-active suspension system.The four independent mixed H2/H∞ controllers were devised in order to perform a distributed semi-active control system in the vehicle by which the response velocity and reliability can be improved significantly.The performance of the proposed new approach was investigated in time and frequency domains.A good balance between vehicle's comfort and road holding was achieved.An effective and practical control strategy for semi-active suspension system was thus obtained.This new approach exhibits some advantages in implementation,performance flexibility and robustness compared to existing methods.展开更多
A quarter-automobile active suspension model was proposed. High speed on/off solenoid valves were used as control valves and fuzzy control was chosen as control method . Based on force analyses of system parts, a math...A quarter-automobile active suspension model was proposed. High speed on/off solenoid valves were used as control valves and fuzzy control was chosen as control method . Based on force analyses of system parts, a mathematical model of the active suspension system was established and simplified by linearization method. Simulation study was conducted with Matlab and three scale coefficients of fuzzy controller (ke, kec, ku) were acquired. And an experimental device was designed and produced. The results indicate that the active suspension system can achieve better vibration isolation performance than passive suspension system, the displacement amplitude of automobile body can be reduced to 55%. Fuzzy control is an effective control method for active suspension system.展开更多
To provide a simulation system platform for designing and debugging a small autonomous underwater vehicle's (AUV) motion controller, a six-degree of freedom (6-DOF) dynamic model for AUV controlled by thruster an...To provide a simulation system platform for designing and debugging a small autonomous underwater vehicle's (AUV) motion controller, a six-degree of freedom (6-DOF) dynamic model for AUV controlled by thruster and fins with appendages is examined. Based on the dynamic model, a simulation system for the AUV's motion is established. The different kinds of typical motions are simulated to analyze the motion performance and the maneuverability of the AUV. In order to evaluate the influences of appendages on the motion performance of the AUV, simulations of the AUV with and without appendages are performed and compared. The results demonstrate the AUV has good maneuverability with and without appendages.展开更多
A dynamic thermal transfer model of a proton exchange membrane fuel cell (PEMFC) stack is developed based on energy conservation in order to reach better temperature control of PEMFC stack. Considering its uncertain p...A dynamic thermal transfer model of a proton exchange membrane fuel cell (PEMFC) stack is developed based on energy conservation in order to reach better temperature control of PEMFC stack. Considering its uncertain parameters and disturbance, we propose a robust adaptive controller based on backstepping algorithm of Lyaponov function. Numerical simulations indicate the validity of the proposed controller.展开更多
The operating principle of an antilock braking system (ABS) is it compares current value of angular acceleration with the threshold value. The advantage of such system is that enough it has only the angular velocity...The operating principle of an antilock braking system (ABS) is it compares current value of angular acceleration with the threshold value. The advantage of such system is that enough it has only the angular velocity sensors. The disadvantage is successive overshoot, i. e. successive transition from wheels locking mode to wheels rolling mode. So braking mechanism can’ t realize the maximum possible torque in the current road conditions. The idea of increasing the braking effectiveness is the intensity of rising pressure depends on the road conditions. The problem is the torque produced by braking mechanism, current road conditions and the value of traction coefficient is unknown For evaluation of these parameters built and training three neural networks. A simulator of random road condition's variation was built to test adequacy of the control unites operation in close to real conditions.展开更多
By means of the feasibility of some linear matrix inequalities(LMIs),delay dependent sufficient condition is derived for the existence of a linear sliding surface,which guarantees quadratic stability of the reduced-or...By means of the feasibility of some linear matrix inequalities(LMIs),delay dependent sufficient condition is derived for the existence of a linear sliding surface,which guarantees quadratic stability of the reduced-order equivalent system restricted to the sliding surface.And a reaching motion controller is proposed.A numerical simulation shows the effectiveness of the approach.展开更多
The theoretical study of a semi-active predictive control(SAPC) system with magnetorheological(MR) dampers to reduce the responses of seismically excited structures was presented.The SAPC scheme is based on a predicti...The theoretical study of a semi-active predictive control(SAPC) system with magnetorheological(MR) dampers to reduce the responses of seismically excited structures was presented.The SAPC scheme is based on a prediction model of the system response to obtain the control actions by minimizing an object function,which has a function of self-compensation for time delay occurring in real application.A double-ended shear mode combined with a valve mode MR damper,named MRF-04K damper,with the maximum force of 20 kN was designed and manufactured,and parameters of the Bouc-Wen hysteresis model were determined to portray the behavior of this damper.As an example,a 5-story building frame equipped with 2 MRF-04K dampers was presented to demonstrate the performance of the proposed SAPC scheme for addressing time delay and reducing the structural responses under different earthquakes.Comparison with the uncontrolled structure,the passive-off and passive-on cases indicates that both the peak and the norm values of structural responses are all clearly reduced,and the SAPC scheme has a better performance than the two passive cases.展开更多
Production scheduling is one of the most important problems to be considered in the effective performance of the automatic manufacturing system.It is the typical kind of NP-complete problem. The methods commonly used ...Production scheduling is one of the most important problems to be considered in the effective performance of the automatic manufacturing system.It is the typical kind of NP-complete problem. The methods commonly used are not suitable to solve complicated problems because the calculating time rises exponentially with the increase of the problem size. In this paper, a new algorithm - immune based scheduling algorithm (IBSA) is proposed. After the description of the mathematics model and the calculating procedure of immune based scheduling,some examples are tested in the software system called HM IM& C that is developed usingVC+ +6.0. The testing results show that IBSA has high efficiency to solve scheduling problem.展开更多
The allocation of control and stock in venture capital is the key point of the venture capital project.This paper develops a dynamic model of control and stock and profoundly analyses how to allocate the control betwe...The allocation of control and stock in venture capital is the key point of the venture capital project.This paper develops a dynamic model of control and stock and profoundly analyses how to allocate the control between the entrepreneur and the venture capitalist.The model reveals the relationship of control and stock's structure,the time and the degree of imparting the control to the entrepreneur or the venture capitalist,the condition of retracting the control and compensation accordingly.展开更多
In this study, a linear model predictive control(MPC) approach with optimal filters is proposed for handling unmeasured disturbances with arbitrary statistics. Two types of optimal filters are introduced into the fram...In this study, a linear model predictive control(MPC) approach with optimal filters is proposed for handling unmeasured disturbances with arbitrary statistics. Two types of optimal filters are introduced into the framework of MPC to relax the assumption of integrated white noise model in existing approaches. The introduced filters are globally optimal for linear systems with unmeasured disturbances that have unknown statistics. This enables the proposed MPC to better handle disturbances without access to disturbance statistics. As a result, the effort required for disturbance modeling can be alleviated. The proposed MPC can achieve offset-free control in the presence of asymptotically constant unmeasured disturbances. Simulation results demonstrate that the proposed approach can provide an improved disturbance ?rejection performance over conventional approaches when applied to the control of systems with unmeasured disturbances that have arbitrary statistics.展开更多
In order to improve the yaw stability of the vehicle with active front steering system, an adaptive PID-type fuzzy control scheme is designed to make the yaw rate tracking the desired values as close as possible. A 2-...In order to improve the yaw stability of the vehicle with active front steering system, an adaptive PID-type fuzzy control scheme is designed to make the yaw rate tracking the desired values as close as possible. A 2-DOF vehicle model with active front steering is built firstly, and then the fuzzy PID controller is designed in detail. The simulation investigations of the yaw stability with different steering ma- neuvers are performed. The simulation results show the effectiveness of the fuzzy PID controller for improving the vehicle's yaw stability.展开更多
Based on the theory of system dynamics, the paper analyzes the mechanism of socio-economic benefits of highway projects and establishes the system dynamics model of regional economic-highway development. Then taking J...Based on the theory of system dynamics, the paper analyzes the mechanism of socio-economic benefits of highway projects and establishes the system dynamics model of regional economic-highway development. Then taking Jinji(Tianjin--Jixian) Highway of Tianjin as an example, the errors of system simulation are tested, and the system dynamics model built is verified to be quite stable, which has a high performance. Through the comparison of simulation results with and without Jinji Highway, the paper simulates and predicts the socio-economie benefit of each year from 2003 to 2013. Thus the quantification evaluation of socio-economic benefit of highway project is realized and will provide the theory instructions for similar projects in the future.展开更多
This work deals with the nonlinear control of a marine diesel engine by use of a robust intelligent control strategy based on cerebellar model articulation controller (CMAC). A mathematical model of diesel engine pr...This work deals with the nonlinear control of a marine diesel engine by use of a robust intelligent control strategy based on cerebellar model articulation controller (CMAC). A mathematical model of diesel engine propulsion system is presented. In order to increase the accuracy of dynamical speed, the mathematical model of engagement process based on the law of energy conservation is proposed. Then, a robust cerebellar model articulation controller is proposed for uncertain nonlinear systems. The concept of active disturbance rejection control (ADRC) is adopted so that the proposed controller has more robustness against uncertainties. Finally, the proposed controller is applied to engine speed control system. Both the model of the diesel engine propulsion system and of the control law are validated by a virtual detailed simulation environment. The prediction capability of the model and the control efficiency are clearly shown.展开更多
The constitutive behavior of microcrystals remains mysterious since very little,or no information regarding plastic deformation in the measured stress-strain curve is available due to plastic instability.Furthermore,t...The constitutive behavior of microcrystals remains mysterious since very little,or no information regarding plastic deformation in the measured stress-strain curve is available due to plastic instability.Furthermore,the measured stress-strain curves vary greatly under different control modes,while constitutive behavior should remain unaffected by test methods.Beyond these reasons,probing the real constitutive behavior of microcrystals has long been a challenge because the nonlinear dynamical behaviors of micromechanical testing systems are unclear.Here,we perform and carefully analyze the experiments on singlecrystal aluminum micropillars under displacement control and load control.To interpret these experimental results,a lumpedparameter physical model based on the principle of micromechanical testing is developed,which can directly relate nonlinear dynamics of the micromechanical testing system to the constitutive behavior of microcrystals.This reveals that some stages of the measured stress-strain curve attributed to the control algorithm are not related to constitutive behavior.By solving the nonlinear dynamics of the micromechanical testing system,intense plastic instability(large strain burst)starting from the equilibrium state is attributed to the strain-softening stage of microcrystals.Parametric studies are also performed to reduce the influence of plastic instability on the measured responses.This study provides critical insights for developing various constitutive models and designing a reliable micromechanical testing system.展开更多
基金Project(50775225) supported by the National Natural Science Foundation of ChinaProjects(CSTC, 2008AC6097, 2008BA6025) supported by National Natural Science Foundation of Chongqing, China
文摘A new semi-active suspension control strategy through mixed H2/H∞ robust technique was developed due to its flexibility and robustness to model uncertainties.A full car model with seven degrees of freedom was established to demonstrate the effectiveness of the new control approach.Magneto-rheological(MR) dampers were designed,manufactured and characterized as available semi-active actuators in the developed semi-active suspension system.The four independent mixed H2/H∞ controllers were devised in order to perform a distributed semi-active control system in the vehicle by which the response velocity and reliability can be improved significantly.The performance of the proposed new approach was investigated in time and frequency domains.A good balance between vehicle's comfort and road holding was achieved.An effective and practical control strategy for semi-active suspension system was thus obtained.This new approach exhibits some advantages in implementation,performance flexibility and robustness compared to existing methods.
文摘A quarter-automobile active suspension model was proposed. High speed on/off solenoid valves were used as control valves and fuzzy control was chosen as control method . Based on force analyses of system parts, a mathematical model of the active suspension system was established and simplified by linearization method. Simulation study was conducted with Matlab and three scale coefficients of fuzzy controller (ke, kec, ku) were acquired. And an experimental device was designed and produced. The results indicate that the active suspension system can achieve better vibration isolation performance than passive suspension system, the displacement amplitude of automobile body can be reduced to 55%. Fuzzy control is an effective control method for active suspension system.
基金Supported by the National Natural Science Foundation of China under Grant No.50909025
文摘To provide a simulation system platform for designing and debugging a small autonomous underwater vehicle's (AUV) motion controller, a six-degree of freedom (6-DOF) dynamic model for AUV controlled by thruster and fins with appendages is examined. Based on the dynamic model, a simulation system for the AUV's motion is established. The different kinds of typical motions are simulated to analyze the motion performance and the maneuverability of the AUV. In order to evaluate the influences of appendages on the motion performance of the AUV, simulations of the AUV with and without appendages are performed and compared. The results demonstrate the AUV has good maneuverability with and without appendages.
文摘A dynamic thermal transfer model of a proton exchange membrane fuel cell (PEMFC) stack is developed based on energy conservation in order to reach better temperature control of PEMFC stack. Considering its uncertain parameters and disturbance, we propose a robust adaptive controller based on backstepping algorithm of Lyaponov function. Numerical simulations indicate the validity of the proposed controller.
文摘The operating principle of an antilock braking system (ABS) is it compares current value of angular acceleration with the threshold value. The advantage of such system is that enough it has only the angular velocity sensors. The disadvantage is successive overshoot, i. e. successive transition from wheels locking mode to wheels rolling mode. So braking mechanism can’ t realize the maximum possible torque in the current road conditions. The idea of increasing the braking effectiveness is the intensity of rising pressure depends on the road conditions. The problem is the torque produced by braking mechanism, current road conditions and the value of traction coefficient is unknown For evaluation of these parameters built and training three neural networks. A simulator of random road condition's variation was built to test adequacy of the control unites operation in close to real conditions.
基金National Natural Science Foundation of China(No.60574081)
文摘By means of the feasibility of some linear matrix inequalities(LMIs),delay dependent sufficient condition is derived for the existence of a linear sliding surface,which guarantees quadratic stability of the reduced-order equivalent system restricted to the sliding surface.And a reaching motion controller is proposed.A numerical simulation shows the effectiveness of the approach.
基金Projects(90815025,51178034) supported by the National Natural Science Foundation of China
文摘The theoretical study of a semi-active predictive control(SAPC) system with magnetorheological(MR) dampers to reduce the responses of seismically excited structures was presented.The SAPC scheme is based on a prediction model of the system response to obtain the control actions by minimizing an object function,which has a function of self-compensation for time delay occurring in real application.A double-ended shear mode combined with a valve mode MR damper,named MRF-04K damper,with the maximum force of 20 kN was designed and manufactured,and parameters of the Bouc-Wen hysteresis model were determined to portray the behavior of this damper.As an example,a 5-story building frame equipped with 2 MRF-04K dampers was presented to demonstrate the performance of the proposed SAPC scheme for addressing time delay and reducing the structural responses under different earthquakes.Comparison with the uncontrolled structure,the passive-off and passive-on cases indicates that both the peak and the norm values of structural responses are all clearly reduced,and the SAPC scheme has a better performance than the two passive cases.
基金Shanghai Natural Science Foundation (01ZF14004) National Technology Innovation Project (02CJ-14 -05 -01)
文摘Production scheduling is one of the most important problems to be considered in the effective performance of the automatic manufacturing system.It is the typical kind of NP-complete problem. The methods commonly used are not suitable to solve complicated problems because the calculating time rises exponentially with the increase of the problem size. In this paper, a new algorithm - immune based scheduling algorithm (IBSA) is proposed. After the description of the mathematics model and the calculating procedure of immune based scheduling,some examples are tested in the software system called HM IM& C that is developed usingVC+ +6.0. The testing results show that IBSA has high efficiency to solve scheduling problem.
文摘The allocation of control and stock in venture capital is the key point of the venture capital project.This paper develops a dynamic model of control and stock and profoundly analyses how to allocate the control between the entrepreneur and the venture capitalist.The model reveals the relationship of control and stock's structure,the time and the degree of imparting the control to the entrepreneur or the venture capitalist,the condition of retracting the control and compensation accordingly.
基金Supported by the Startup Foundation of Hangzhou Dianzi University(ZX150204302002/009)the Open Project Program of the State Key Laboratory of Industrial Control Technology(Zhejiang University)National Natural Science Foundation of China(No.61374142,61273145,and 61273146)
文摘In this study, a linear model predictive control(MPC) approach with optimal filters is proposed for handling unmeasured disturbances with arbitrary statistics. Two types of optimal filters are introduced into the framework of MPC to relax the assumption of integrated white noise model in existing approaches. The introduced filters are globally optimal for linear systems with unmeasured disturbances that have unknown statistics. This enables the proposed MPC to better handle disturbances without access to disturbance statistics. As a result, the effort required for disturbance modeling can be alleviated. The proposed MPC can achieve offset-free control in the presence of asymptotically constant unmeasured disturbances. Simulation results demonstrate that the proposed approach can provide an improved disturbance ?rejection performance over conventional approaches when applied to the control of systems with unmeasured disturbances that have arbitrary statistics.
基金Supported by the National Natural Science Foundation of China (No.50705008)
文摘In order to improve the yaw stability of the vehicle with active front steering system, an adaptive PID-type fuzzy control scheme is designed to make the yaw rate tracking the desired values as close as possible. A 2-DOF vehicle model with active front steering is built firstly, and then the fuzzy PID controller is designed in detail. The simulation investigations of the yaw stability with different steering ma- neuvers are performed. The simulation results show the effectiveness of the fuzzy PID controller for improving the vehicle's yaw stability.
基金Technology Plan Projects of Tianjin Planning Bureau(No.2010H3-0011)
文摘Based on the theory of system dynamics, the paper analyzes the mechanism of socio-economic benefits of highway projects and establishes the system dynamics model of regional economic-highway development. Then taking Jinji(Tianjin--Jixian) Highway of Tianjin as an example, the errors of system simulation are tested, and the system dynamics model built is verified to be quite stable, which has a high performance. Through the comparison of simulation results with and without Jinji Highway, the paper simulates and predicts the socio-economie benefit of each year from 2003 to 2013. Thus the quantification evaluation of socio-economic benefit of highway project is realized and will provide the theory instructions for similar projects in the future.
基金the National Natural Science Foundation of China(No.51179102)the China Postdoctoral Science Foundation(No.20110490716)
文摘This work deals with the nonlinear control of a marine diesel engine by use of a robust intelligent control strategy based on cerebellar model articulation controller (CMAC). A mathematical model of diesel engine propulsion system is presented. In order to increase the accuracy of dynamical speed, the mathematical model of engagement process based on the law of energy conservation is proposed. Then, a robust cerebellar model articulation controller is proposed for uncertain nonlinear systems. The concept of active disturbance rejection control (ADRC) is adopted so that the proposed controller has more robustness against uncertainties. Finally, the proposed controller is applied to engine speed control system. Both the model of the diesel engine propulsion system and of the control law are validated by a virtual detailed simulation environment. The prediction capability of the model and the control efficiency are clearly shown.
基金supported by the National Natural Science Foundation of China(Grant Nos.51731009,12102216,and 11972205)the Fundamental Research Funds for the Central Universities(Grant No.2020XZZX005-02)the China Postdoctoral Science Foundation(Grant Nos.2021M691796,and 2021T140379).
文摘The constitutive behavior of microcrystals remains mysterious since very little,or no information regarding plastic deformation in the measured stress-strain curve is available due to plastic instability.Furthermore,the measured stress-strain curves vary greatly under different control modes,while constitutive behavior should remain unaffected by test methods.Beyond these reasons,probing the real constitutive behavior of microcrystals has long been a challenge because the nonlinear dynamical behaviors of micromechanical testing systems are unclear.Here,we perform and carefully analyze the experiments on singlecrystal aluminum micropillars under displacement control and load control.To interpret these experimental results,a lumpedparameter physical model based on the principle of micromechanical testing is developed,which can directly relate nonlinear dynamics of the micromechanical testing system to the constitutive behavior of microcrystals.This reveals that some stages of the measured stress-strain curve attributed to the control algorithm are not related to constitutive behavior.By solving the nonlinear dynamics of the micromechanical testing system,intense plastic instability(large strain burst)starting from the equilibrium state is attributed to the strain-softening stage of microcrystals.Parametric studies are also performed to reduce the influence of plastic instability on the measured responses.This study provides critical insights for developing various constitutive models and designing a reliable micromechanical testing system.