A force control strategy for position controlled robotic manipulators is presented. On line force feedback data are employed to estimate the local shape of the unknown constraint. The estimated vectors are used to ge...A force control strategy for position controlled robotic manipulators is presented. On line force feedback data are employed to estimate the local shape of the unknown constraint. The estimated vectors are used to generate the virtual reference trajectory for the target impedance model that is driven by the force error to produce command position. By following the command position trajectory the robotic manipulator can follow the unknown constraint surface while keeping an acceptable force error in a manner depicted by the target impedance model. Computer simulation on a 3 linked planar manipulator and experimental studies on an Adept 3, an SCARA type robotic manipulator, are conducted to verify the force tracking capability of the proposed control strategy.展开更多
A mobile mechanism with four tracked-units for a missing miner search robot (MMSR) is presented, with a design based on the terrain features and atrocious environment of an underground mine. Its structure and working ...A mobile mechanism with four tracked-units for a missing miner search robot (MMSR) is presented, with a design based on the terrain features and atrocious environment of an underground mine. Its structure and working prin- ciple is discussed. The four tracked-units are controlled independently and driven cooperatively. By means of two DC motors being controlled respectively, one tracked-unit can accomplish two types of driving mode: tracked travel and in- tegral unit legged rotation (IULR), forming a track-legged compound function mechanism. Its capabilities of surmount- ing obstacles and its toppling stability in underground mines have also been analyzed. The results show that the mobile mechanism can directly surmount an obstacle of the height less than the length of one tracked-unit and get across a raceway with a span less than the length of one tracked-unit by using tracked travel and IULR. Its unstable slope angle is 51.3°. Toppling stability is determined by its structural size, moving direction and slope angle. IULR of four tracked-units can adjust the robot’s posture and then enhance toppling stability or assist in surmounting obstacles. Its track-legged compound function mechanism makes it suitable for working in underground mines.展开更多
High-accuracy motion trajectory tracking control of a pneumatic cylinder driven by a proportional directional control valve was considered. A mathematical model of the system was developed firstly. Due to the time-var...High-accuracy motion trajectory tracking control of a pneumatic cylinder driven by a proportional directional control valve was considered. A mathematical model of the system was developed firstly. Due to the time-varying friction force in the cylinder, unmodeled dynamics, and unknown disturbances, there exist large extent of parametric uncertainties and rather severe uncertain nonlinearities in the pneumatic system. To deal with these uncertainties effectively, an adaptive robust controller was constructed in this work. The proposed controller employs on-line recursive least squares estimation(RLSE) to reduce the extent of parametric uncertainties, and utilizes the sliding mode control method to attenuate the effects of parameter estimation errors, unmodeled dynamics and disturbances. Therefore, a prescribed motion tracking transient performance and final tracking accuracy can be guaranteed. Since the system model uncertainties are unmatched, the recursive backstepping design technology was applied. In order to solve the conflicts between the sliding mode control design and the adaptive control design, the projection mapping was used to condition the RLSE algorithm so that the parameter estimates are kept within a known bounded convex set. Extensive experimental results were presented to illustrate the excellent achievable performance of the proposed controller and performance robustness to the load variation and sudden disturbance.展开更多
This paper presents a two-wheeled differential spherical mobile robot in view of the problems that the motion of spherical robot is difficult to control and the sensor is limited by the spherical shell.The robot is si...This paper presents a two-wheeled differential spherical mobile robot in view of the problems that the motion of spherical robot is difficult to control and the sensor is limited by the spherical shell.The robot is simple in structure,flexible in motion and easy to control.The kinematics and dynamics model of spherical mobile robot is established according to the structure of spherical mobile robot.On the basis of the adaptive neural sliding mode control,the trajectory tracking controller of the system is designed.During the simulation of the s-trajectory and circular trajectory tracking control of the spherical mobile robot,it is concluded that the spherical mobile robot is flexible in motion and easy to control.In addition,the simulation results show that the adaptive neural sliding mode control can effectively track the trajectory of the spherical robot.The adaptive control eliminates the influence of unknown parameters and disturbances,and avoids the jitter of left and right wheels during the torque output.展开更多
Recent results on the development of a navigation system for a smart wheelchair are presented in this paper. In order to reduce the development cost, a modular solution is designed by using commercial and low cost dev...Recent results on the development of a navigation system for a smart wheelchair are presented in this paper. In order to reduce the development cost, a modular solution is designed by using commercial and low cost devices. The functionalities of the tracking control system are described. Experimental results of the proposed assistive system are also presented and discussed.展开更多
The trajectory planning and tracking control for an underactuated unmanned surface vessel(USV) were addressed.The reference trajectory was generated by a virtual USV,and the error equation of trajectory tracking for u...The trajectory planning and tracking control for an underactuated unmanned surface vessel(USV) were addressed.The reference trajectory was generated by a virtual USV,and the error equation of trajectory tracking for underactuated USV was obtained,which transformed the tracking and stabilization problem of underactuated USV into the stabilization problem of the trajectory tracking error equation.A nonlinear state feedback controller was proposed based on backstepping technique and Lyapunov's direct method.By means of Lyapunov analysis,it is proved that the proposed controller ensures that the solutions of closed loop system have the ultimate boundedness property.Numerical simulation results are presented to validate the effectiveness and robustness of the proposed controller.展开更多
In recent years,an innovative underactuated robot was developed,named as underactuated cable-driven trusslike manipulator(UCTM),to be suitable in aerospace applications.However,there has been strong consensus that the...In recent years,an innovative underactuated robot was developed,named as underactuated cable-driven trusslike manipulator(UCTM),to be suitable in aerospace applications.However,there has been strong consensus that the stabilization of planar underactuated manipulators without gravity is a great challenge since the system includes a second order nonholonomic constraint and most classical control methods are not suitable for this kind of system.Furthermore,the complexity of the truss-like structure results in tremendous difficulty of computational complicacy and high nonlinearity during dynamic modelling in addition to controller design.It is paramount to solve these difficulties for UCTM's future applications.To solve the above difficulties,this paper presents a dynamic modelling method for UCTM and a trajectory tracking control method based on partial feedback linearization(PFL)that fulfills the control goal of moving UCTM from its original position to a desired position by tracking a given trajectory of the joint angles.To achieve this,a model equivalent method is proposed to make UCTM equivalent with a three-link manipulator in the sense of dynamic behavior.Then the Lagrangian equation combined with complex vector method is proposed in the dynamic modelling process of UCTM,which simplifies the derivation procedure.Based on the established dynamic model,a coordinate transformation method is proposed to transform the control force matrix into the conventional form of an underactuated system,so that the control force can be separated from the unactuated term.The PFL method in combination with the LQR control method is then proposed to realize the targets that the joint angles can track given desired trajectory.Simulation experiments are conducted to verify the correctness and effectiveness of the proposed methods.展开更多
To eliminate the perturbation of interceptor detection induced by aerodynamic heating,the head pursuit (HP) guidance law for three-dimensional interception was presented. The guidance law positioned the interceptor ah...To eliminate the perturbation of interceptor detection induced by aerodynamic heating,the head pursuit (HP) guidance law for three-dimensional interception was presented. The guidance law positioned the interceptor ahead of the target on its flight trajectory,and the speed of interceptor was required to be lower than that of the target. On the basis of a novel head pursuit three-dimensional guidance model,a nonlinear guidance law was developed based on smooth sliding mode control theory. At the same time,a special observer was designed to estimate the target acceleration,and a numerical example on maneuvering ballistic target interception verified the effectiveness of the presented guidance law.展开更多
Wheeled mobile robot is one of the well-known nonholonomic systems. A two-wheeled sell-balance robot is taken as the research objective. This paper carried out a detailed force analysis of the robot and established a ...Wheeled mobile robot is one of the well-known nonholonomic systems. A two-wheeled sell-balance robot is taken as the research objective. This paper carried out a detailed force analysis of the robot and established a non-linear dynamics model. An adaptive tracking controller for the kinematic model of a nonhotonomic mobile robot with unknown parameters is also proposed. Using control Lyapunov function (CLF), the controller's global asymptotic stability has been proven. The adaptive trajectory tracking controller decreases the disturbance in the course of tracking control and enhances the real-time control characteristics. The simulation result indicated that the wheeled mobile robot tracking can be effectively controlled.展开更多
Trajectory tracking control of space robots in task space is of great importance to space missions, which require on-orbit manipulations. This paper focuses on position and attitude tracking control of a tree-floating...Trajectory tracking control of space robots in task space is of great importance to space missions, which require on-orbit manipulations. This paper focuses on position and attitude tracking control of a tree-floating space robot in task space. Since nei- ther the nonlinear terms and parametric uncertainties of the dynamic model, nor the external disturbances are known, an adap- tive radial basis function network based nonsingular terminal sliding mode (RBF-NTSM) control method is presented. The proposed algorithm combines the nonlinear sliding manifold with the radial basis function to improve control performance. Moreover, in order to account for actuator physical constraints, a constrained adaptive RBF-NTSM, which employs a RBF network to compensate for the limited input is developed. The adaptive updating laws acquired by Lyapunov approach guar- antee the global stability of the control system and suppress chattering problems. Two examples are provided using a six-link free-floating space robot. Simulation results clearly demonstrate that the proposed constrained adaptive RBF-NTSM control method performs high precision task based on incomplete dynamic model of the space robots. In addition, the control errors converge faster and the chattering is eliminated comparing to traditional sliding mode control.展开更多
A generalized controller based on stability theory of singularly perturbed systems is proposed,to deal with the problem of bounded actuator inputs in robot trajectory tracking control.The saturation function with erro...A generalized controller based on stability theory of singularly perturbed systems is proposed,to deal with the problem of bounded actuator inputs in robot trajectory tracking control.The saturation function with error-gain matrix is applied in the torque control law,which ensures the upper bound of torque inputs in any given limited range.Through appropriately setting the entries of the error-gain matrix,the tracking performance can be improved.Moreover,a pseudo signal is generated from a linear filter to substitute for the actual velocity error,eliminating the need for velocity measurements.Finally,to verify the ef-fectiveness of the generalized controller,a new saturated controller with error-gain-contained arc tangent function is designed.Comparison experiments show that the proposed controller can strictly guarantee the bound of the torque inputs in situations with non-zero initial tracking errors,and gives a better tracking result than other controllers.展开更多
文摘A force control strategy for position controlled robotic manipulators is presented. On line force feedback data are employed to estimate the local shape of the unknown constraint. The estimated vectors are used to generate the virtual reference trajectory for the target impedance model that is driven by the force error to produce command position. By following the command position trajectory the robotic manipulator can follow the unknown constraint surface while keeping an acceptable force error in a manner depicted by the target impedance model. Computer simulation on a 3 linked planar manipulator and experimental studies on an Adept 3, an SCARA type robotic manipulator, are conducted to verify the force tracking capability of the proposed control strategy.
文摘A mobile mechanism with four tracked-units for a missing miner search robot (MMSR) is presented, with a design based on the terrain features and atrocious environment of an underground mine. Its structure and working prin- ciple is discussed. The four tracked-units are controlled independently and driven cooperatively. By means of two DC motors being controlled respectively, one tracked-unit can accomplish two types of driving mode: tracked travel and in- tegral unit legged rotation (IULR), forming a track-legged compound function mechanism. Its capabilities of surmount- ing obstacles and its toppling stability in underground mines have also been analyzed. The results show that the mobile mechanism can directly surmount an obstacle of the height less than the length of one tracked-unit and get across a raceway with a span less than the length of one tracked-unit by using tracked travel and IULR. Its unstable slope angle is 51.3°. Toppling stability is determined by its structural size, moving direction and slope angle. IULR of four tracked-units can adjust the robot’s posture and then enhance toppling stability or assist in surmounting obstacles. Its track-legged compound function mechanism makes it suitable for working in underground mines.
基金Projects(50775200,50905156)supported by the National Natural Science Foundation of China
文摘High-accuracy motion trajectory tracking control of a pneumatic cylinder driven by a proportional directional control valve was considered. A mathematical model of the system was developed firstly. Due to the time-varying friction force in the cylinder, unmodeled dynamics, and unknown disturbances, there exist large extent of parametric uncertainties and rather severe uncertain nonlinearities in the pneumatic system. To deal with these uncertainties effectively, an adaptive robust controller was constructed in this work. The proposed controller employs on-line recursive least squares estimation(RLSE) to reduce the extent of parametric uncertainties, and utilizes the sliding mode control method to attenuate the effects of parameter estimation errors, unmodeled dynamics and disturbances. Therefore, a prescribed motion tracking transient performance and final tracking accuracy can be guaranteed. Since the system model uncertainties are unmatched, the recursive backstepping design technology was applied. In order to solve the conflicts between the sliding mode control design and the adaptive control design, the projection mapping was used to condition the RLSE algorithm so that the parameter estimates are kept within a known bounded convex set. Extensive experimental results were presented to illustrate the excellent achievable performance of the proposed controller and performance robustness to the load variation and sudden disturbance.
基金Foundation items:National Science and Technology Major Project(No.2011ZX05021-001)China Postdoctoral Science Foundation(No.2019M663865)。
文摘This paper presents a two-wheeled differential spherical mobile robot in view of the problems that the motion of spherical robot is difficult to control and the sensor is limited by the spherical shell.The robot is simple in structure,flexible in motion and easy to control.The kinematics and dynamics model of spherical mobile robot is established according to the structure of spherical mobile robot.On the basis of the adaptive neural sliding mode control,the trajectory tracking controller of the system is designed.During the simulation of the s-trajectory and circular trajectory tracking control of the spherical mobile robot,it is concluded that the spherical mobile robot is flexible in motion and easy to control.In addition,the simulation results show that the adaptive neural sliding mode control can effectively track the trajectory of the spherical robot.The adaptive control eliminates the influence of unknown parameters and disturbances,and avoids the jitter of left and right wheels during the torque output.
文摘Recent results on the development of a navigation system for a smart wheelchair are presented in this paper. In order to reduce the development cost, a modular solution is designed by using commercial and low cost devices. The functionalities of the tracking control system are described. Experimental results of the proposed assistive system are also presented and discussed.
基金Project(2013M540271)supported by the Postdoctoral Science Foundation of ChinaProject(HEUCF1321003)support by the Basic Research Foundation of Central University,ChinaProject(51209050)supported by the National Natural Science Foundation of China
文摘The trajectory planning and tracking control for an underactuated unmanned surface vessel(USV) were addressed.The reference trajectory was generated by a virtual USV,and the error equation of trajectory tracking for underactuated USV was obtained,which transformed the tracking and stabilization problem of underactuated USV into the stabilization problem of the trajectory tracking error equation.A nonlinear state feedback controller was proposed based on backstepping technique and Lyapunov's direct method.By means of Lyapunov analysis,it is proved that the proposed controller ensures that the solutions of closed loop system have the ultimate boundedness property.Numerical simulation results are presented to validate the effectiveness and robustness of the proposed controller.
基金Projects(51275107,52005124)supported by the National Natural Science Foundation of China。
文摘In recent years,an innovative underactuated robot was developed,named as underactuated cable-driven trusslike manipulator(UCTM),to be suitable in aerospace applications.However,there has been strong consensus that the stabilization of planar underactuated manipulators without gravity is a great challenge since the system includes a second order nonholonomic constraint and most classical control methods are not suitable for this kind of system.Furthermore,the complexity of the truss-like structure results in tremendous difficulty of computational complicacy and high nonlinearity during dynamic modelling in addition to controller design.It is paramount to solve these difficulties for UCTM's future applications.To solve the above difficulties,this paper presents a dynamic modelling method for UCTM and a trajectory tracking control method based on partial feedback linearization(PFL)that fulfills the control goal of moving UCTM from its original position to a desired position by tracking a given trajectory of the joint angles.To achieve this,a model equivalent method is proposed to make UCTM equivalent with a three-link manipulator in the sense of dynamic behavior.Then the Lagrangian equation combined with complex vector method is proposed in the dynamic modelling process of UCTM,which simplifies the derivation procedure.Based on the established dynamic model,a coordinate transformation method is proposed to transform the control force matrix into the conventional form of an underactuated system,so that the control force can be separated from the unactuated term.The PFL method in combination with the LQR control method is then proposed to realize the targets that the joint angles can track given desired trajectory.Simulation experiments are conducted to verify the correctness and effectiveness of the proposed methods.
文摘To eliminate the perturbation of interceptor detection induced by aerodynamic heating,the head pursuit (HP) guidance law for three-dimensional interception was presented. The guidance law positioned the interceptor ahead of the target on its flight trajectory,and the speed of interceptor was required to be lower than that of the target. On the basis of a novel head pursuit three-dimensional guidance model,a nonlinear guidance law was developed based on smooth sliding mode control theory. At the same time,a special observer was designed to estimate the target acceleration,and a numerical example on maneuvering ballistic target interception verified the effectiveness of the presented guidance law.
基金Supported by the National High Technology Research and Development Programme of China (No. 2006AA04Z245)the Program for Changjiang Scholars and Innovative Research Team in University ( No. IRT0423)the Fund for Foreign Scholars in University Research and Teaching Programs (No. B07018)
文摘Wheeled mobile robot is one of the well-known nonholonomic systems. A two-wheeled sell-balance robot is taken as the research objective. This paper carried out a detailed force analysis of the robot and established a non-linear dynamics model. An adaptive tracking controller for the kinematic model of a nonhotonomic mobile robot with unknown parameters is also proposed. Using control Lyapunov function (CLF), the controller's global asymptotic stability has been proven. The adaptive trajectory tracking controller decreases the disturbance in the course of tracking control and enhances the real-time control characteristics. The simulation result indicated that the wheeled mobile robot tracking can be effectively controlled.
文摘Trajectory tracking control of space robots in task space is of great importance to space missions, which require on-orbit manipulations. This paper focuses on position and attitude tracking control of a tree-floating space robot in task space. Since nei- ther the nonlinear terms and parametric uncertainties of the dynamic model, nor the external disturbances are known, an adap- tive radial basis function network based nonsingular terminal sliding mode (RBF-NTSM) control method is presented. The proposed algorithm combines the nonlinear sliding manifold with the radial basis function to improve control performance. Moreover, in order to account for actuator physical constraints, a constrained adaptive RBF-NTSM, which employs a RBF network to compensate for the limited input is developed. The adaptive updating laws acquired by Lyapunov approach guar- antee the global stability of the control system and suppress chattering problems. Two examples are provided using a six-link free-floating space robot. Simulation results clearly demonstrate that the proposed constrained adaptive RBF-NTSM control method performs high precision task based on incomplete dynamic model of the space robots. In addition, the control errors converge faster and the chattering is eliminated comparing to traditional sliding mode control.
基金Project(No.2008C21106)supported by the Zhejiang Provincial Science and Technology Foundation of China
文摘A generalized controller based on stability theory of singularly perturbed systems is proposed,to deal with the problem of bounded actuator inputs in robot trajectory tracking control.The saturation function with error-gain matrix is applied in the torque control law,which ensures the upper bound of torque inputs in any given limited range.Through appropriately setting the entries of the error-gain matrix,the tracking performance can be improved.Moreover,a pseudo signal is generated from a linear filter to substitute for the actual velocity error,eliminating the need for velocity measurements.Finally,to verify the ef-fectiveness of the generalized controller,a new saturated controller with error-gain-contained arc tangent function is designed.Comparison experiments show that the proposed controller can strictly guarantee the bound of the torque inputs in situations with non-zero initial tracking errors,and gives a better tracking result than other controllers.