A hybrid approach using MLD (mixed logical dynamical) framework to handle infeasibility and constraint prioritization issues in MPC (model predictive control) based on input-output model is introduced. By expressing c...A hybrid approach using MLD (mixed logical dynamical) framework to handle infeasibility and constraint prioritization issues in MPC (model predictive control) based on input-output model is introduced. By expressing constraint priorities as propositional logics and by transforming the propositional logics into inequalities,the infeasibility and constraint prioritization issues are solved in the MPC. Constraints with higher priorities are met first, and then these with lower priorities are satisfied as much as possible. This new approach is illustrated in the control of a heavy oil fractionator-Shell column. The overall control performance has been significantly improved through the infeasibility and control priorities handling.展开更多
As a raw material,kaolin was modified to prepare a high-performance ammonium ion-exchange material.According to cation-exchange capacity (CEC) measurement,the prepared ammonium ion-exchange material has an ammonium io...As a raw material,kaolin was modified to prepare a high-performance ammonium ion-exchange material.According to cation-exchange capacity (CEC) measurement,the prepared ammonium ion-exchange material has an ammonium ion-exchange capacity greater than 75mg/g and can be used to remove ammonia nitrogen in water treatment.A pharmaceutical extruder-rounder was used to study the effects of granulation process.Polyethylene glycol6000 (PEG-6000) was used as the pore-forming agent and calcining temperature of 650℃ was used as the optimal condition.NMR data indicate that 27 Al is mainly converted from hexa-coordinated Al to tetra-coordinated Al during the modification.Compared with 29 Si in the original kaolin,29 Si in the modified kaolin does not have an obvious change.A comparison of the data with Langmuir and Freundlich isotherm models shows a good correlation.The Freundlich model describes the process more accurately,and the adsorption process of ammonia nitrogen in water with the ammonium ion-exchange material closely matches the pseudo-second-order reaction.展开更多
In order to investigate the influence of three key molar ratios (n(SiO2)/n(Al2O3), n(K2O)/n(Al2O3) and n(H2O)/n(K2O)), a total of nine potassium poly-sialate-disiloxo (K-PSDS) geopolymeric cement matri...In order to investigate the influence of three key molar ratios (n(SiO2)/n(Al2O3), n(K2O)/n(Al2O3) and n(H2O)/n(K2O)), a total of nine potassium poly-sialate-disiloxo (K-PSDS) geopolymeric cement matrices were designed according to orthogonal design principle. Subsequently, XRD, ESEM-EDXA and MAS-NMR techniques were employed to further characterize the microstructure of the most fully reacted geopolymeric cement matrix. The experimental results show that n(K2O)/n(Al2O3) has the most significant effect on compressive strength amongst the three ratios. The highest compressive strength (20.1 MPa) can be achieved when n(SiO2)/n(Al2O3)=6.5, n(K2O)/n(Al2O3)=0.8 and n(HEO)/n(K2O)=10.0. The FTIR spectra of nine PSDS geopolymeric cement matrices also indicate that geopolymeric cement matrix with the highest strength is the most fully reacted one and possesses the largest amount of geopolymeric cement products. The microscopic analysis reveals that PSDS geopolymeric cement matrix possesses structural characteristics similar to gel substances in having a wide range of Si endowments, but predominantly the framework molecular chains of Si partially replaced by 4-coordinated Al tetrahedral.展开更多
Based on the characteristics of the ripping of rock, the simulated conditions that would be satisfied by the prototype ripping and the model ripping have been derived in this paper. In order to .nanufacture the satisf...Based on the characteristics of the ripping of rock, the simulated conditions that would be satisfied by the prototype ripping and the model ripping have been derived in this paper. In order to .nanufacture the satisfying equivalent materials for the model ripping, a new method has been set up, and the materials, which can simulate the prototype rock "Hawkesbury sandstone", have been made by using the methed.展开更多
To create control laws of the cutting process on the heavy lathe, the temperature-force model of optimization of cutting conditions for turning was selected. The models to manage the process of cutting on heavy lathe ...To create control laws of the cutting process on the heavy lathe, the temperature-force model of optimization of cutting conditions for turning was selected. The models to manage the process of cutting on heavy lathe in real time were created. It was found that the optimization of the cutting process must be carried out according to the criteria: productivity, cost and tool life. The hardware structure of the adaptive control system for heavy lathe was developed and its dynamic performance was investigated. The system provides function of the cutting speed of adaptive control and the possibility of compensation of linear, nonlinear and temperature-related inaccuracies. Research results were implemented in the prototype of adaptive control system for heavy lathe and the integral complex of optimal control of an adaptive technological system.展开更多
基金Supported by the 973 Program (No. 2002CB312200)National High Tech. Project of China (863/CIMS 2004AA412050).
文摘A hybrid approach using MLD (mixed logical dynamical) framework to handle infeasibility and constraint prioritization issues in MPC (model predictive control) based on input-output model is introduced. By expressing constraint priorities as propositional logics and by transforming the propositional logics into inequalities,the infeasibility and constraint prioritization issues are solved in the MPC. Constraints with higher priorities are met first, and then these with lower priorities are satisfied as much as possible. This new approach is illustrated in the control of a heavy oil fractionator-Shell column. The overall control performance has been significantly improved through the infeasibility and control priorities handling.
基金Supported by Natural Science Foundation of Tianjin(No.06YFGPSH04300)
文摘As a raw material,kaolin was modified to prepare a high-performance ammonium ion-exchange material.According to cation-exchange capacity (CEC) measurement,the prepared ammonium ion-exchange material has an ammonium ion-exchange capacity greater than 75mg/g and can be used to remove ammonia nitrogen in water treatment.A pharmaceutical extruder-rounder was used to study the effects of granulation process.Polyethylene glycol6000 (PEG-6000) was used as the pore-forming agent and calcining temperature of 650℃ was used as the optimal condition.NMR data indicate that 27 Al is mainly converted from hexa-coordinated Al to tetra-coordinated Al during the modification.Compared with 29 Si in the original kaolin,29 Si in the modified kaolin does not have an obvious change.A comparison of the data with Langmuir and Freundlich isotherm models shows a good correlation.The Freundlich model describes the process more accurately,and the adsorption process of ammonia nitrogen in water with the ammonium ion-exchange material closely matches the pseudo-second-order reaction.
基金Project(2009CB623200) supported by the National Basic Research Program of ChinaProjects(50702014, 50878043) supported by the National Natural Science Foundation of ChinaProject(NCET-08-0116) supported by the Program for New Century Excellent Talents in University of Ministry of Education, China
文摘In order to investigate the influence of three key molar ratios (n(SiO2)/n(Al2O3), n(K2O)/n(Al2O3) and n(H2O)/n(K2O)), a total of nine potassium poly-sialate-disiloxo (K-PSDS) geopolymeric cement matrices were designed according to orthogonal design principle. Subsequently, XRD, ESEM-EDXA and MAS-NMR techniques were employed to further characterize the microstructure of the most fully reacted geopolymeric cement matrix. The experimental results show that n(K2O)/n(Al2O3) has the most significant effect on compressive strength amongst the three ratios. The highest compressive strength (20.1 MPa) can be achieved when n(SiO2)/n(Al2O3)=6.5, n(K2O)/n(Al2O3)=0.8 and n(HEO)/n(K2O)=10.0. The FTIR spectra of nine PSDS geopolymeric cement matrices also indicate that geopolymeric cement matrix with the highest strength is the most fully reacted one and possesses the largest amount of geopolymeric cement products. The microscopic analysis reveals that PSDS geopolymeric cement matrix possesses structural characteristics similar to gel substances in having a wide range of Si endowments, but predominantly the framework molecular chains of Si partially replaced by 4-coordinated Al tetrahedral.
文摘Based on the characteristics of the ripping of rock, the simulated conditions that would be satisfied by the prototype ripping and the model ripping have been derived in this paper. In order to .nanufacture the satisfying equivalent materials for the model ripping, a new method has been set up, and the materials, which can simulate the prototype rock "Hawkesbury sandstone", have been made by using the methed.
文摘To create control laws of the cutting process on the heavy lathe, the temperature-force model of optimization of cutting conditions for turning was selected. The models to manage the process of cutting on heavy lathe in real time were created. It was found that the optimization of the cutting process must be carried out according to the criteria: productivity, cost and tool life. The hardware structure of the adaptive control system for heavy lathe was developed and its dynamic performance was investigated. The system provides function of the cutting speed of adaptive control and the possibility of compensation of linear, nonlinear and temperature-related inaccuracies. Research results were implemented in the prototype of adaptive control system for heavy lathe and the integral complex of optimal control of an adaptive technological system.