Localization of the inspected chip image is one of the key problems with machine vision aided surface mount devices (SMD) and other micro-electronic equipments. This paper presents a new edge-directed subpixel edge lo...Localization of the inspected chip image is one of the key problems with machine vision aided surface mount devices (SMD) and other micro-electronic equipments. This paper presents a new edge-directed subpixel edge localization method. The image is divided into two regions, edge and non-edge, using edge detection to emphasize the edge feature. Since the edges of the chip image are straight, they have straight-line characteristics locally and globally. First, the line segments of the straight edge are located to subpixel precision, according to their local straight properties, in a 3×3 neighborhood of the edge region. Second, the subpixel midpoints of the line segments are computed. Finally, the straight edge is fitted using the midpoints and the least square method, according to its global straight property in the entire edge region. In this way, the edge is located to subpixel precision. While fitting the edge, the irregular points are eliminated by the angles of the line segments to improve the precision. We can also distinguish different edges and their intersections using the angles of the line segments and distances between the edge points, then give the vectorial result of the image edge with high precision.展开更多
In multi-agent systems(MAS),finding agents which are able to service properly in an open and dynamic environment are the key issue in problem solving.However,it is difficult to find agent resources quickly and positio...In multi-agent systems(MAS),finding agents which are able to service properly in an open and dynamic environment are the key issue in problem solving.However,it is difficult to find agent resources quickly and position agents accurately and complete the system integration by the keyword matching method,due to the lack of clear semantic information of the classical agent model.An semantic-based agent dynamic positioning mechanism was proposed to assist in the system dynamic integration.According to the semantic agent model and the description method,a two-stage process including the domain positioning stage and the service semantic matching positioning stage,was discussed.With this mechanism,proper agents that provide appropriate service to assign sub-tasks for task completion can be found quickly and accurately.Finally,the effectiveness of the positioning mechanism was validated through the in-depth performance analysis in the application of simulation experiments to the system dynamic integration.展开更多
文摘Localization of the inspected chip image is one of the key problems with machine vision aided surface mount devices (SMD) and other micro-electronic equipments. This paper presents a new edge-directed subpixel edge localization method. The image is divided into two regions, edge and non-edge, using edge detection to emphasize the edge feature. Since the edges of the chip image are straight, they have straight-line characteristics locally and globally. First, the line segments of the straight edge are located to subpixel precision, according to their local straight properties, in a 3×3 neighborhood of the edge region. Second, the subpixel midpoints of the line segments are computed. Finally, the straight edge is fitted using the midpoints and the least square method, according to its global straight property in the entire edge region. In this way, the edge is located to subpixel precision. While fitting the edge, the irregular points are eliminated by the angles of the line segments to improve the precision. We can also distinguish different edges and their intersections using the angles of the line segments and distances between the edge points, then give the vectorial result of the image edge with high precision.
基金Projects(61173026,61373045,61202039)supported by the National Natural Science Foundation of ChinaProject(2012AA02A603)supported by the National High Technology Research and Development Program of China+1 种基金Projects(K5051223008,K5051223002)supported by the Fundamental Research Funds for the Central Universities of ChinaProject(513***103E)supported by the Pre-Research Project of the"Twelfth Five-Year-Plan"of China
文摘In multi-agent systems(MAS),finding agents which are able to service properly in an open and dynamic environment are the key issue in problem solving.However,it is difficult to find agent resources quickly and position agents accurately and complete the system integration by the keyword matching method,due to the lack of clear semantic information of the classical agent model.An semantic-based agent dynamic positioning mechanism was proposed to assist in the system dynamic integration.According to the semantic agent model and the description method,a two-stage process including the domain positioning stage and the service semantic matching positioning stage,was discussed.With this mechanism,proper agents that provide appropriate service to assign sub-tasks for task completion can be found quickly and accurately.Finally,the effectiveness of the positioning mechanism was validated through the in-depth performance analysis in the application of simulation experiments to the system dynamic integration.