C/C composites with banded structure pyrocarbon were fabricated by fast chemical vapor infiltration(CVI),with C3H6 as carbon source,N2 as carrier gas,and three-dimensional(3D) 12K PAN-based carbon fabric with high...C/C composites with banded structure pyrocarbon were fabricated by fast chemical vapor infiltration(CVI),with C3H6 as carbon source,N2 as carrier gas,and three-dimensional(3D) 12K PAN-based carbon fabric with high density of 0.94 g/cm3 as preform.Experimental results indicated that the fracture characteristics of C/C composites were closely related to the frequency of high-temperature treatment(HTT) at the break of CVI process.According to the load?displacement curves,C/C composites showed a pseudoplastic fracture after twice of HTT.After three times of HTT,load?displacement curves tended to be stable with a decreasing bending strength at 177.5 MPa.Delamination failure and intrastratal fiber fracture were observed at the cross-section of C/C composites by scanning electronic microscope.Because the content of pyrocarbon and fibers has a different distribution in layers,the C/C composites show different fracture characteristics at various regions,which leads to good toughness and bending strength.展开更多
The operating temperature of a solid oxide fuel cell (SOFC) stack is a very important parameter to be controlled, which impacts the performance of the SOFC due to thermal cycling. In this paper, an adaptive fuzzy cont...The operating temperature of a solid oxide fuel cell (SOFC) stack is a very important parameter to be controlled, which impacts the performance of the SOFC due to thermal cycling. In this paper, an adaptive fuzzy control method based on an affine nonlinear temperature model is developed to control the temperature of the SOFC within a specified range. Fuzzy logic systems are used to approximate nonlinear functions in the SOFC system and an adaptive technique is employed to construct the controller. Compared with the traditional fuzzy and proportion-integral-derivative (PID) control, the simulation results show that the designed adaptive fuzzy control method performed much better. So it is feasible to build an adaptive fuzzy controller for temperature control of the SOFC.展开更多
This research investigated the combined effects of addition of Bi and Sb elements on the microstructure,thermal properties,ultimate tensile strength,ductility,and hardness of Sn−0.7Ag−0.5Cu(SAC0705)solder alloys.The r...This research investigated the combined effects of addition of Bi and Sb elements on the microstructure,thermal properties,ultimate tensile strength,ductility,and hardness of Sn−0.7Ag−0.5Cu(SAC0705)solder alloys.The results indicated that the addition of Bi and Sb significantly reduced the undercooling of solders,refined theβ-Sn phase and extended the eutectic areas of the solders.Moreover,the formation of SbSn and Bi phases in the solder matrix affected the mechanical properties of the solder.With the addition of 3 wt.%Bi and 3 wt.%Sb,the ultimate tensile strength and hardness of the SAC0705 base alloy increased from 31.26 MPa and 15.07 HV to 63.15 MPa and 23.68 HV,respectively.Ductility decreased due to grain boundary strengthening,solid solution strengthening,and precipitation strengthening effects,and the change in the fracture mechanism of the solder alloys.展开更多
Pelletization is one of useful processes for the agglomeration of iron ore or concentrates. However, manganese ore fines are mainly agglomerated by sintering due to its high combined water which adversely affects the ...Pelletization is one of useful processes for the agglomeration of iron ore or concentrates. However, manganese ore fines are mainly agglomerated by sintering due to its high combined water which adversely affects the roasting performance of pellets. In this work, high pressure roll grinding(HPRG) process and optimization of temperature elevation system were investigated to improve the strength of fired manganese ore pellets. It is shown that the manganese ore possesses good ballability after being pretreated by HPRG twice, and good green balls were produced under the conditions of blending 2.0% bentonite in the feed, balling for 7 min at 16.00% moisture. High quality roasted pellets with the compressive strength of 2711 N per pellet were manufactured through preheating at 1050 °C for 10 min and firing at 1335 °C for 15 min by controlling the cracks formation. The fired manganese pellets keep the strength by the solid interconnection of recrystallized pyrolusite grains and the binding of manganite liquid phase which filled the pores and clearance among minerals. The product pellets contain high Mn grade and low impurities, and can be used to smelt ferromanganese, which provides a possible way to use imported manganese ore fines containing high combined water to produce high value ferromanganese.展开更多
To overcome the deficiencies addressed in the conventional PID control and improve the dynamic performance and robustness of the system, a simple design and parameters tuning approach of internal model control-PID (I...To overcome the deficiencies addressed in the conventional PID control and improve the dynamic performance and robustness of the system, a simple design and parameters tuning approach of internal model control-PID (IMC-PID) controller was proposed for the first order plus time-delay (FOPTD) process and the second order plus time-delay (SOPTD) process. By approximating the time-delay term of the process model with the first-order Taylor series, the expressions for IMC-PID controller parameters were derived, and they had only one adjustable parameter 2 which was directly related to the dynamic performance and robustness of the system. Moreover, an analytical approach of selecting 2 was given based on the maximum sensitivity Ms. Then, the robust tuning of the system could be achieved according to the value of Ms. In addition, the proposed method could be extended to the integrator plus time-delay (IPTD) process and the first order delay integrating (FODI) process. Simulation studies were carried out on various processes with time-delay, and the results show that the proposed method could provide a better dynamic performance of both the set-point tracking and disturbance rejection and robustness against parameters perturbation.展开更多
It is urgent to effectively improve the production efficiency in the running process of manufacturing systems through a new generation of information technology.According to the current growing trend of the internet o...It is urgent to effectively improve the production efficiency in the running process of manufacturing systems through a new generation of information technology.According to the current growing trend of the internet of things(IOT)in the manufacturing industry,aiming at the capacitor manufacturing plant,a multi-level architecture oriented to IOT-based manufacturing environment is established for a flexible flow-shop scheduling system.Next,according to multi-source manufacturing information driven in the manufacturing execution process,a scheduling optimization model based on the lot-streaming strategy is proposed under the framework.An improved distribution estimation algorithm is developed to obtain the optimal solution of the problem by balancing local search and global search.Finally,experiments are carried out and the results verify the feasibility and effectiveness of the proposed approach.展开更多
Cu/Al multilayers were produced by high-temperature accumulative roll bonding(ARB)methods up to three passes.To achieve a high bonding strength,prior to ARB processing,the Cu and Al sheets were heated to 350,400,450 a...Cu/Al multilayers were produced by high-temperature accumulative roll bonding(ARB)methods up to three passes.To achieve a high bonding strength,prior to ARB processing,the Cu and Al sheets were heated to 350,400,450 and 500 ℃,respectively.The mechanical properties were evaluated by tensile tests.The microstructure was examined by optical microscopy and scanning electron microscopy equipped with energy dispersive spectrometry.The ultimate tensile stress,the grain size and the thickness of diffusion layer of lamellar composites increase with rolling temperature.When the rolling temperature is 400 ℃,the laminates show the highest ductility,but the yield stress is the lowest.As the rolling temperature further increases,both the yield stress and the ultimate tensile stress increase and the ductility decreases slightly.The mechanical properties of lamellar composites processed by low and high temperature ARB are determined by grain size and the thickness of diffusion layer,respectively.展开更多
TiC nanoparticles reinforced 2219 aluminum matrix composites were successfully prepared by ultrasonic casting, followed by forging and T6 heat treatment. The friction and wear properties of the disc-to-column were stu...TiC nanoparticles reinforced 2219 aluminum matrix composites were successfully prepared by ultrasonic casting, followed by forging and T6 heat treatment. The friction and wear properties of the disc-to-column were studied under four separate normal values of 5, 10, 20 and 30 N. The increasing hardness value of the nanocomposite may be attributed to the large amount of TiC(i.e., 1.3 wt.% and 1.7 wt.%) introduced to the composites. The friction coefficient of the nanocomposite decreased with the increase of TiC nanoparticles(0-1.7 wt.%) under the same load. But the wear resistance of the TiC/AA2219 nanocomposite increased by 30%-90% as compared to the 2219 matrix alloy. And it decreased with the increasing load. The composite with 0.9 wt.% TiC produced the best results in terms of friction and wear because of its relatively higher hardness and perfect ability to retain a transfer layer of a comparatively larger thickness. On the wear surface, some Al2O3particles were found which aided in the development of protective shear regions and improved the wear resistance. The wear mechanism for the TiC/AA2219 nanocomposite was a combination of adhesive and oxidative wear, with the composites containing hard TiC nanoparticles being mainly abrasive.展开更多
Abstract: The present article compares the propane dehydrogenation performance of alumina binder-added PtSnNa/ A1SBA-15 catalysts prepared via three different procedures in comparison with the performance of a binder...Abstract: The present article compares the propane dehydrogenation performance of alumina binder-added PtSnNa/ A1SBA-15 catalysts prepared via three different procedures in comparison with the performance of a binder-free PtSnNa/ AISBA-15 catalyst. All these catalysts have been investigated by reaction tests and some physico-chemical characterizations such as BET, H2 chemisorption, catalytic grain crushing strength, NHa-TPD and TPO analyses. Test results showed that the addition of alumina binder could enhance the mechanical strength of catalyst evidently. Moreover, the different preparation procedures not only modified the characteristics of both acid and metal functions but also affected the coke deposition on the catalysts. Among these catalysts studied, the catalyst prepared by impregnation followed by the agglomeration of alumi- na binder had exhibited the highest catalytic activity and stability compared with other catalyst samples undergoing different preparation procedures. The possible reason may be attributed to the highest metallic dispersion and the strong interactions among Pt, Sn and the support.展开更多
基金Project (50802115) supported by the National Natural Science Foundation of ChinaProject (2011CB605801) supported by the National Basic Research Program of China
文摘C/C composites with banded structure pyrocarbon were fabricated by fast chemical vapor infiltration(CVI),with C3H6 as carbon source,N2 as carrier gas,and three-dimensional(3D) 12K PAN-based carbon fabric with high density of 0.94 g/cm3 as preform.Experimental results indicated that the fracture characteristics of C/C composites were closely related to the frequency of high-temperature treatment(HTT) at the break of CVI process.According to the load?displacement curves,C/C composites showed a pseudoplastic fracture after twice of HTT.After three times of HTT,load?displacement curves tended to be stable with a decreasing bending strength at 177.5 MPa.Delamination failure and intrastratal fiber fracture were observed at the cross-section of C/C composites by scanning electronic microscope.Because the content of pyrocarbon and fibers has a different distribution in layers,the C/C composites show different fracture characteristics at various regions,which leads to good toughness and bending strength.
文摘The operating temperature of a solid oxide fuel cell (SOFC) stack is a very important parameter to be controlled, which impacts the performance of the SOFC due to thermal cycling. In this paper, an adaptive fuzzy control method based on an affine nonlinear temperature model is developed to control the temperature of the SOFC within a specified range. Fuzzy logic systems are used to approximate nonlinear functions in the SOFC system and an adaptive technique is employed to construct the controller. Compared with the traditional fuzzy and proportion-integral-derivative (PID) control, the simulation results show that the designed adaptive fuzzy control method performed much better. So it is feasible to build an adaptive fuzzy controller for temperature control of the SOFC.
基金supported by the Division of Physical Science,Faculty of Science,Prince of Songkla University (PSU),Thailand
文摘This research investigated the combined effects of addition of Bi and Sb elements on the microstructure,thermal properties,ultimate tensile strength,ductility,and hardness of Sn−0.7Ag−0.5Cu(SAC0705)solder alloys.The results indicated that the addition of Bi and Sb significantly reduced the undercooling of solders,refined theβ-Sn phase and extended the eutectic areas of the solders.Moreover,the formation of SbSn and Bi phases in the solder matrix affected the mechanical properties of the solder.With the addition of 3 wt.%Bi and 3 wt.%Sb,the ultimate tensile strength and hardness of the SAC0705 base alloy increased from 31.26 MPa and 15.07 HV to 63.15 MPa and 23.68 HV,respectively.Ductility decreased due to grain boundary strengthening,solid solution strengthening,and precipitation strengthening effects,and the change in the fracture mechanism of the solder alloys.
基金Project(2011GH561685)supported by the China Torch Program
文摘Pelletization is one of useful processes for the agglomeration of iron ore or concentrates. However, manganese ore fines are mainly agglomerated by sintering due to its high combined water which adversely affects the roasting performance of pellets. In this work, high pressure roll grinding(HPRG) process and optimization of temperature elevation system were investigated to improve the strength of fired manganese ore pellets. It is shown that the manganese ore possesses good ballability after being pretreated by HPRG twice, and good green balls were produced under the conditions of blending 2.0% bentonite in the feed, balling for 7 min at 16.00% moisture. High quality roasted pellets with the compressive strength of 2711 N per pellet were manufactured through preheating at 1050 °C for 10 min and firing at 1335 °C for 15 min by controlling the cracks formation. The fired manganese pellets keep the strength by the solid interconnection of recrystallized pyrolusite grains and the binding of manganite liquid phase which filled the pores and clearance among minerals. The product pellets contain high Mn grade and low impurities, and can be used to smelt ferromanganese, which provides a possible way to use imported manganese ore fines containing high combined water to produce high value ferromanganese.
基金Project(2007011049) supported by the Natural Science Foundation of Shanxi Province,China
文摘To overcome the deficiencies addressed in the conventional PID control and improve the dynamic performance and robustness of the system, a simple design and parameters tuning approach of internal model control-PID (IMC-PID) controller was proposed for the first order plus time-delay (FOPTD) process and the second order plus time-delay (SOPTD) process. By approximating the time-delay term of the process model with the first-order Taylor series, the expressions for IMC-PID controller parameters were derived, and they had only one adjustable parameter 2 which was directly related to the dynamic performance and robustness of the system. Moreover, an analytical approach of selecting 2 was given based on the maximum sensitivity Ms. Then, the robust tuning of the system could be achieved according to the value of Ms. In addition, the proposed method could be extended to the integrator plus time-delay (IPTD) process and the first order delay integrating (FODI) process. Simulation studies were carried out on various processes with time-delay, and the results show that the proposed method could provide a better dynamic performance of both the set-point tracking and disturbance rejection and robustness against parameters perturbation.
基金supported by the National Natural Science Foundations of China(No. 51875171)
文摘It is urgent to effectively improve the production efficiency in the running process of manufacturing systems through a new generation of information technology.According to the current growing trend of the internet of things(IOT)in the manufacturing industry,aiming at the capacitor manufacturing plant,a multi-level architecture oriented to IOT-based manufacturing environment is established for a flexible flow-shop scheduling system.Next,according to multi-source manufacturing information driven in the manufacturing execution process,a scheduling optimization model based on the lot-streaming strategy is proposed under the framework.An improved distribution estimation algorithm is developed to obtain the optimal solution of the problem by balancing local search and global search.Finally,experiments are carried out and the results verify the feasibility and effectiveness of the proposed approach.
基金Project(51674303) supported by the National Natural Science Foundation of ChinaProject supported by National Youth Thousand Plan of China+2 种基金Project(2018RS3015) supported by Huxiang High-Level Talent Gathering Program of Hunan Province,ChinaProject(2019CX006) supported by Innovation Driven Program of Central South University,ChinaProject supported by the Research Fund of the Key Laboratory of High Performance Complex Manufacturing at Central South University,China
文摘Cu/Al multilayers were produced by high-temperature accumulative roll bonding(ARB)methods up to three passes.To achieve a high bonding strength,prior to ARB processing,the Cu and Al sheets were heated to 350,400,450 and 500 ℃,respectively.The mechanical properties were evaluated by tensile tests.The microstructure was examined by optical microscopy and scanning electron microscopy equipped with energy dispersive spectrometry.The ultimate tensile stress,the grain size and the thickness of diffusion layer of lamellar composites increase with rolling temperature.When the rolling temperature is 400 ℃,the laminates show the highest ductility,but the yield stress is the lowest.As the rolling temperature further increases,both the yield stress and the ultimate tensile stress increase and the ductility decreases slightly.The mechanical properties of lamellar composites processed by low and high temperature ARB are determined by grain size and the thickness of diffusion layer,respectively.
基金Project(2020RC2002) supported by Science and Technology Innovation Program of Hunan Province,ChinaProject(2021JJ40774) supported by Natural Science Foundation of Hunan Province,China+2 种基金Project(20A430007) supported by Key Scientific Research Projects of Colleges and Universities in Henan Province,ChinaProject(212102210032)supported by the Key Scientific and Technological Projects in Henan Province,ChinaProject(HEU10202117)supported by the Key Laboratory of Superlight Materials Surface Technology,Ministry of Education,China。
文摘TiC nanoparticles reinforced 2219 aluminum matrix composites were successfully prepared by ultrasonic casting, followed by forging and T6 heat treatment. The friction and wear properties of the disc-to-column were studied under four separate normal values of 5, 10, 20 and 30 N. The increasing hardness value of the nanocomposite may be attributed to the large amount of TiC(i.e., 1.3 wt.% and 1.7 wt.%) introduced to the composites. The friction coefficient of the nanocomposite decreased with the increase of TiC nanoparticles(0-1.7 wt.%) under the same load. But the wear resistance of the TiC/AA2219 nanocomposite increased by 30%-90% as compared to the 2219 matrix alloy. And it decreased with the increasing load. The composite with 0.9 wt.% TiC produced the best results in terms of friction and wear because of its relatively higher hardness and perfect ability to retain a transfer layer of a comparatively larger thickness. On the wear surface, some Al2O3particles were found which aided in the development of protective shear regions and improved the wear resistance. The wear mechanism for the TiC/AA2219 nanocomposite was a combination of adhesive and oxidative wear, with the composites containing hard TiC nanoparticles being mainly abrasive.
基金the National Nature Science Foundation of China(50873026,and21106017)the Production and Research Prospective Joint Research Project(BY2009153)+1 种基金the Science and Technology Support Program(BE2008129) of Jiangsu Province of ChinaSpecialized Research Fund for the Doctoral Program of Higher Education of China(20100092120047) for financial supports
文摘Abstract: The present article compares the propane dehydrogenation performance of alumina binder-added PtSnNa/ A1SBA-15 catalysts prepared via three different procedures in comparison with the performance of a binder-free PtSnNa/ AISBA-15 catalyst. All these catalysts have been investigated by reaction tests and some physico-chemical characterizations such as BET, H2 chemisorption, catalytic grain crushing strength, NHa-TPD and TPO analyses. Test results showed that the addition of alumina binder could enhance the mechanical strength of catalyst evidently. Moreover, the different preparation procedures not only modified the characteristics of both acid and metal functions but also affected the coke deposition on the catalysts. Among these catalysts studied, the catalyst prepared by impregnation followed by the agglomeration of alumi- na binder had exhibited the highest catalytic activity and stability compared with other catalyst samples undergoing different preparation procedures. The possible reason may be attributed to the highest metallic dispersion and the strong interactions among Pt, Sn and the support.