A highly efficient and re liable topology-dual buck half bridge inverter (DBI) is introduced. The existenc e of discontinuous conduction mode (DCM) operation state requires the bias of in du ctor current for DBI imple...A highly efficient and re liable topology-dual buck half bridge inverter (DBI) is introduced. The existenc e of discontinuous conduction mode (DCM) operation state requires the bias of in du ctor current for DBI implemented with linear controllers like ramp comparison SP WM (RCSPWM) controllers. A novel operation scheme for DBI and a hysteresis curre nt controlled dual buck half bridge inverter (HCDBI) are proposed. The bias curr ent required by RCSPWM DBI is eliminated and conduction losses are dramatically reduced. HCDBI has greatly improved the modulation performance in DCM region for the benefit of its excellent command tracking capability. The operational schem e and control strategy are presented. Power losses of the conventional half brid ge inverter (CHBI) and HCDBI are compared with mathematical computation, and exp erimental verification is also executed. Both calculational and experimental res ults verify that HCDBI has a superior switching performance over CHBI. Its exce llent high frequency operational capacity provides another access to realize high fre quency operation of inverters.展开更多
A new intelligent anti-swing control scheme,which combined fuzzy neural network(FNN) and sliding mode control(SMC) with particle swarm optimization(PSO),was presented for bridge crane.The outputs of three fuzzy neural...A new intelligent anti-swing control scheme,which combined fuzzy neural network(FNN) and sliding mode control(SMC) with particle swarm optimization(PSO),was presented for bridge crane.The outputs of three fuzzy neural networks were used to approach the uncertainties of the positioning subsystem,lifting-rope subsystem and anti-swing subsystem.Then,the parameters of the controller were optimized with PSO to enable the system to have good dynamic performances.During the process of high-speed load hoisting and dropping,this method can not only realize the accurate position of the trolley and eliminate the sway of the load in spite of existing uncertainties,and the maximum swing angle is only ±0.1 rad,but also completely eliminate the chattering of conventional sliding mode control and improve the robustness of system.The simulation results show the correctness and validity of this method.展开更多
Elastic-plastic steel damper(EPSD) is a new device controlling seismic responses.The mechanical principle of EPSD was presented and a comparison was conducted between the theoretical formulas and finite element(FE) si...Elastic-plastic steel damper(EPSD) is a new device controlling seismic responses.The mechanical principle of EPSD was presented and a comparison was conducted between the theoretical formulas and finite element(FE) simulation of damper units.The verified force-displacement hysteretic curve of the damper system was obtained with reference to tests.The Nanjing Jiangxinzhou Bridge(NJB) was subsequently taken as the case to investigate the seismic response control effect of EPSDs on single-tower self-anchored suspension bridges.A 3-dimensional FE model of the bridge was established in ANSYS and the dynamic and static analyses of the bridge were conducted,the control effect of EPSDs under different seismic waves was further investigated through nonlinear time-history analysis based on the validated model.Results showed that both the simplified theoretical and FE simulation methods can preferable reflect the mechanical performance of EPSD,and that seismic responses of NJB with EPSDs are better than those with elastic connection device or fluid viscous damper.However,the control effect of EPSDs is influenced by seismic wave characteristics.展开更多
文摘A highly efficient and re liable topology-dual buck half bridge inverter (DBI) is introduced. The existenc e of discontinuous conduction mode (DCM) operation state requires the bias of in du ctor current for DBI implemented with linear controllers like ramp comparison SP WM (RCSPWM) controllers. A novel operation scheme for DBI and a hysteresis curre nt controlled dual buck half bridge inverter (HCDBI) are proposed. The bias curr ent required by RCSPWM DBI is eliminated and conduction losses are dramatically reduced. HCDBI has greatly improved the modulation performance in DCM region for the benefit of its excellent command tracking capability. The operational schem e and control strategy are presented. Power losses of the conventional half brid ge inverter (CHBI) and HCDBI are compared with mathematical computation, and exp erimental verification is also executed. Both calculational and experimental res ults verify that HCDBI has a superior switching performance over CHBI. Its exce llent high frequency operational capacity provides another access to realize high fre quency operation of inverters.
基金Project(51075289) supported by the National Natural Science Foundation of ChinaProject(20122014) supported by the Doctor Foundation of Taiyuan University of Science and Technology,China
文摘A new intelligent anti-swing control scheme,which combined fuzzy neural network(FNN) and sliding mode control(SMC) with particle swarm optimization(PSO),was presented for bridge crane.The outputs of three fuzzy neural networks were used to approach the uncertainties of the positioning subsystem,lifting-rope subsystem and anti-swing subsystem.Then,the parameters of the controller were optimized with PSO to enable the system to have good dynamic performances.During the process of high-speed load hoisting and dropping,this method can not only realize the accurate position of the trolley and eliminate the sway of the load in spite of existing uncertainties,and the maximum swing angle is only ±0.1 rad,but also completely eliminate the chattering of conventional sliding mode control and improve the robustness of system.The simulation results show the correctness and validity of this method.
基金supported by the National Natural Science Foundation of China (Grant No. 50908046)the Teaching & Scientific Research Fund for Excellent Young Teachers of Southeast University,the Basic Scientific &Research Fund of Southeast University (Grant Nos. 3205001101,Seucx201106)the Priority Academic Program Development Foundation of Jiangsu Higher Education Institutions are gratefully acknowledged
文摘Elastic-plastic steel damper(EPSD) is a new device controlling seismic responses.The mechanical principle of EPSD was presented and a comparison was conducted between the theoretical formulas and finite element(FE) simulation of damper units.The verified force-displacement hysteretic curve of the damper system was obtained with reference to tests.The Nanjing Jiangxinzhou Bridge(NJB) was subsequently taken as the case to investigate the seismic response control effect of EPSDs on single-tower self-anchored suspension bridges.A 3-dimensional FE model of the bridge was established in ANSYS and the dynamic and static analyses of the bridge were conducted,the control effect of EPSDs under different seismic waves was further investigated through nonlinear time-history analysis based on the validated model.Results showed that both the simplified theoretical and FE simulation methods can preferable reflect the mechanical performance of EPSD,and that seismic responses of NJB with EPSDs are better than those with elastic connection device or fluid viscous damper.However,the control effect of EPSDs is influenced by seismic wave characteristics.