A kind of active vibration control method was presented through optimal design of driving load of multi-body system with quick startup and brake. Dynamical equation of multi-body system with quick startup and brake wa...A kind of active vibration control method was presented through optimal design of driving load of multi-body system with quick startup and brake. Dynamical equation of multi-body system with quick startup and brake was built, and mathematical model of representing vibration control was also set up according to the moving process from startup to brake. Then optimization vibration control model of system driving load was founded by applying theory of optimization control, which takes rigid body moving variable of braking moment as the known condition, and vibration control equation of multi-body system with quick startup and brake was converted into boundary value problem of differential equation. The transient control algorithm of vibration was put forward, which is the analysis basis for the further research. Theoretical analysis and calculation of numerical examples show that the optimal design method for the multi-body system driving load can decrease the vibration of system with duplication.展开更多
A kind of active vibration control method was presented based on active damping and optimization design for driving load of multibody system with quick startup and brake. Dynamical equation of multibody system with qu...A kind of active vibration control method was presented based on active damping and optimization design for driving load of multibody system with quick startup and brake. Dynamical equation of multibody system with quick startup and brake and piezoelectric actuators intelligent structure was built. The optimum driving load was calculated by applying the presented method. The self-sensing and self-tuning closed-loop active vibration control in quick startup and brake process was realized. The control algorithm, using local velocity negative feedback, i.e. the output of a sensor only affects the output of the actuator collocated, can induce damping effectively to actively suppress the system vibration. Based on the optimization design for driving load of multibody system with quick startup and bake, the active damping of piezoelectric actuators intelligent structure was used to farther suppress the vibration of system. Theoretical analysis and calculation of numerical show that the proposed method makes the vibration of system decrease more than the optimal design method for driving load of multibody system.展开更多
Using renewable energy to drive carbon dioxide reduction reaction(CO_(2)RR)electrochemically into chemicals with high energy density is an efficient way to achieve carbon neutrality,where the effective utilization of ...Using renewable energy to drive carbon dioxide reduction reaction(CO_(2)RR)electrochemically into chemicals with high energy density is an efficient way to achieve carbon neutrality,where the effective utilization of CO_(2) and the storage of renewable energy are realized.The reactivity and selectivity of CO_(2)RR depend on the structure and composition of the catalyst,applied potential,electrolyte,and pH of the solution.Besides,multiple electron and proton transfer steps are involved in CO_(2)RR,making the reaction pathways even more complicated.In pursuit of molecular-level insights into the CO_(2)RR processes,in situ vibrational methods including infrared,Raman and sum frequency generation spectroscopies have been deployed to monitor the dynamic evolution of catalyst structure,to identify reactive intermediates as well as to investigate the effect of local reaction environment on CO_(2)RR performance.This review summarizes key findings from recent electrochemical vibrational spectrosopic studies of CO_(2)RR in addressing the following issues:the CO_(2)RR mechanisms of different pathways,the role of surface-bound CO species,the compositional and structural effects of catalysts and electrolytes on CO_(2)RR activity and selectivity.Our perspectives on developing high sensitivity wide-frequency infrared spectroscopy,coupling different spectroelectrochemical methods and implementing operando vibrational spectroscopies to tackle the CO_(2)RR process in pilot reactors are offered at the end.展开更多
Complex interactions of plates with ambient fluid are common in daily lives,e.g.flags flapping in wind,aerofoils oscillating in flow.Recently,the feasibility to harvest energy using the flutter motion has been demonst...Complex interactions of plates with ambient fluid are common in daily lives,e.g.flags flapping in wind,aerofoils oscillating in flow.Recently,the feasibility to harvest energy using the flutter motion has been demonstrated.The objectives of this study are to systematically explore the effects of the material damping on flag flutter,and then to study the energy interchange between the fluid and the flag.In this study,a two-dimensional model was developed.Three dimensionless parameters govern the system,i.e.the mass ratio between the structure and the fluid,the dimensionless fluid velocity and the dimensionless material damping.Results show that the critical velocity increases with the increase of the material damping.The oscillation frequency of the flag decreases with the increase of the material damping,and the time-averaged energy dissipation rate initially increases and then decreases.The increase of the material damping causes the transition of the system from a higher frequency oscillating state to a lower frequency oscillating state,and from a chaotic state to a periodic state.展开更多
文摘A kind of active vibration control method was presented through optimal design of driving load of multi-body system with quick startup and brake. Dynamical equation of multi-body system with quick startup and brake was built, and mathematical model of representing vibration control was also set up according to the moving process from startup to brake. Then optimization vibration control model of system driving load was founded by applying theory of optimization control, which takes rigid body moving variable of braking moment as the known condition, and vibration control equation of multi-body system with quick startup and brake was converted into boundary value problem of differential equation. The transient control algorithm of vibration was put forward, which is the analysis basis for the further research. Theoretical analysis and calculation of numerical examples show that the optimal design method for the multi-body system driving load can decrease the vibration of system with duplication.
基金Project(50390063) supported by the National Natural Science Foundation of China
文摘A kind of active vibration control method was presented based on active damping and optimization design for driving load of multibody system with quick startup and brake. Dynamical equation of multibody system with quick startup and brake and piezoelectric actuators intelligent structure was built. The optimum driving load was calculated by applying the presented method. The self-sensing and self-tuning closed-loop active vibration control in quick startup and brake process was realized. The control algorithm, using local velocity negative feedback, i.e. the output of a sensor only affects the output of the actuator collocated, can induce damping effectively to actively suppress the system vibration. Based on the optimization design for driving load of multibody system with quick startup and bake, the active damping of piezoelectric actuators intelligent structure was used to farther suppress the vibration of system. Theoretical analysis and calculation of numerical show that the proposed method makes the vibration of system decrease more than the optimal design method for driving load of multibody system.
文摘Using renewable energy to drive carbon dioxide reduction reaction(CO_(2)RR)electrochemically into chemicals with high energy density is an efficient way to achieve carbon neutrality,where the effective utilization of CO_(2) and the storage of renewable energy are realized.The reactivity and selectivity of CO_(2)RR depend on the structure and composition of the catalyst,applied potential,electrolyte,and pH of the solution.Besides,multiple electron and proton transfer steps are involved in CO_(2)RR,making the reaction pathways even more complicated.In pursuit of molecular-level insights into the CO_(2)RR processes,in situ vibrational methods including infrared,Raman and sum frequency generation spectroscopies have been deployed to monitor the dynamic evolution of catalyst structure,to identify reactive intermediates as well as to investigate the effect of local reaction environment on CO_(2)RR performance.This review summarizes key findings from recent electrochemical vibrational spectrosopic studies of CO_(2)RR in addressing the following issues:the CO_(2)RR mechanisms of different pathways,the role of surface-bound CO species,the compositional and structural effects of catalysts and electrolytes on CO_(2)RR activity and selectivity.Our perspectives on developing high sensitivity wide-frequency infrared spectroscopy,coupling different spectroelectrochemical methods and implementing operando vibrational spectroscopies to tackle the CO_(2)RR process in pilot reactors are offered at the end.
基金supported by the National Natural Science Foundation of China(Grant Nos.10832010,11002138 and 11102027)the Innovation Project of CAS(Grant No.KJCX2-YW-L05)
文摘Complex interactions of plates with ambient fluid are common in daily lives,e.g.flags flapping in wind,aerofoils oscillating in flow.Recently,the feasibility to harvest energy using the flutter motion has been demonstrated.The objectives of this study are to systematically explore the effects of the material damping on flag flutter,and then to study the energy interchange between the fluid and the flag.In this study,a two-dimensional model was developed.Three dimensionless parameters govern the system,i.e.the mass ratio between the structure and the fluid,the dimensionless fluid velocity and the dimensionless material damping.Results show that the critical velocity increases with the increase of the material damping.The oscillation frequency of the flag decreases with the increase of the material damping,and the time-averaged energy dissipation rate initially increases and then decreases.The increase of the material damping causes the transition of the system from a higher frequency oscillating state to a lower frequency oscillating state,and from a chaotic state to a periodic state.