Demand for electricity in Saudi Arabia is growing at a significant annual rate of nearly 8%. It is expected that, by 2030, the demand will increase to about 120 GW per year, approximately three times the 2010 load. Sa...Demand for electricity in Saudi Arabia is growing at a significant annual rate of nearly 8%. It is expected that, by 2030, the demand will increase to about 120 GW per year, approximately three times the 2010 load. Satisfying this demand will require a significant investment in the power grid at an estimated cost, over the next 10 years, ofSAR (Saudi Arabia Riyal) 500 billion. Existing power plants rely on oil and natural gas, it is anticipated that meeting the demand in 2030 will consume 3 million barrels ofoil each day, which significantly impacting the economy by reducing the country's income from oil exports, which is a hot button for Saudi decision makers. This paper reviews the responses of various countries in meeting their loads, and therefore, draws recommendations for some resources that should, and should not, be considered best-candidate options for Saudi Arabia economically, technically and environmentally. The discussion primarily examines renewable and nuclear resources.展开更多
A flow control system that combined steady Vortex Generator Jets and Deflected Trailing-edge(VGJs-DT) to decrease the low pressure turbine(LPT) blade numbers was presented.The effects of VGJs-DT on energy loss and flo...A flow control system that combined steady Vortex Generator Jets and Deflected Trailing-edge(VGJs-DT) to decrease the low pressure turbine(LPT) blade numbers was presented.The effects of VGJs-DT on energy loss and flow of low solidity low pressure turbine(LSLPT) cascades were studied.VGJs-DT was found to decrease the energy loss of LSLPT cascade and increase the flow turning angle.VGJs-DT decreased the solidity by 12.5%without a significant increase in energy loss.VGJs-DT was more effective than steady VGJs.VGJs-DT decreased the energy loss and increased the flow angle of the LSLPT cascade with steady VGJs.VGJs-DT can use 50%less mass flow than steady VGJs to inhibit the flow separation in the LSLPT cascade.The deflected trailing edge enhanced the ability of steady VGJs to resist flow separation.Overall,VGJs-DT can be used to control flow separation in LPT cascade and reduce the blade numbers of low pressure turbine stage.展开更多
文摘Demand for electricity in Saudi Arabia is growing at a significant annual rate of nearly 8%. It is expected that, by 2030, the demand will increase to about 120 GW per year, approximately three times the 2010 load. Satisfying this demand will require a significant investment in the power grid at an estimated cost, over the next 10 years, ofSAR (Saudi Arabia Riyal) 500 billion. Existing power plants rely on oil and natural gas, it is anticipated that meeting the demand in 2030 will consume 3 million barrels ofoil each day, which significantly impacting the economy by reducing the country's income from oil exports, which is a hot button for Saudi decision makers. This paper reviews the responses of various countries in meeting their loads, and therefore, draws recommendations for some resources that should, and should not, be considered best-candidate options for Saudi Arabia economically, technically and environmentally. The discussion primarily examines renewable and nuclear resources.
基金supported by the National Foundation for Innovative Research Groups of China(Grant No.51421063)
文摘A flow control system that combined steady Vortex Generator Jets and Deflected Trailing-edge(VGJs-DT) to decrease the low pressure turbine(LPT) blade numbers was presented.The effects of VGJs-DT on energy loss and flow of low solidity low pressure turbine(LSLPT) cascades were studied.VGJs-DT was found to decrease the energy loss of LSLPT cascade and increase the flow turning angle.VGJs-DT decreased the solidity by 12.5%without a significant increase in energy loss.VGJs-DT was more effective than steady VGJs.VGJs-DT decreased the energy loss and increased the flow angle of the LSLPT cascade with steady VGJs.VGJs-DT can use 50%less mass flow than steady VGJs to inhibit the flow separation in the LSLPT cascade.The deflected trailing edge enhanced the ability of steady VGJs to resist flow separation.Overall,VGJs-DT can be used to control flow separation in LPT cascade and reduce the blade numbers of low pressure turbine stage.